Realizability interpretation of proofs in constructive analysis

Abstract We prove constructively (in the style of Bishop) that every monotone continuous function with a uniform modulus of increase has a continuous inverse. The proof is formalized, and a realizing term extracted. It turns out that even in the logical term language—a version of Gödel’s T—evaluation is reasonably efficient.

[1]  HELMUT SCHWICHTENBERG,et al.  CONSTRUCTIVE ANALYSIS WITH WITNESSES , 2007 .

[2]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[3]  Patrik Andersson Exact Real Arithmetic with Automatic Error Estimates in a Computer Algebra System , 2001 .

[4]  Sam Lindley,et al.  Extensional Rewriting with Sums , 2007, TLCA.

[5]  M. Mandelkern Continuity of monotone functions. , 1982 .

[6]  Ulrich Berger,et al.  Term rewriting for normalization by evaluation , 2003, Inf. Comput..

[7]  Josef Berger Exact calculation of inverse functions , 2005, Math. Log. Q..

[8]  Pierre Letouzey,et al.  A New Extraction for Coq , 2002, TYPES.

[9]  Ulrich Berger,et al.  Uniform Heyting arithmetic , 2005, Ann. Pure Appl. Log..

[10]  Martin Hofmann,et al.  Typed Lambda Calculi and Applications 2003, Selected Papers , 2005, Fundam. Informaticae.

[11]  Witold Hurewicz,et al.  Lectures on Ordinary Differential Equations , 1959 .

[12]  Herman Geuvers,et al.  A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals , 2000, TYPES.

[13]  Ulrich Berger,et al.  Program Extraction from Normalization Proofs , 2006, Stud Logica.

[14]  Douglas S. Bridges,et al.  Constructivity in Mathematics , 2004 .

[15]  Cruz Filipe,et al.  Constructive real analysis : a type-theoretical formalization and applications , 2004 .

[16]  D. Dalen Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .

[17]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[18]  Helmut Schwichtenberg,et al.  Proof technology and computation , 2006 .

[19]  Ulrich Kohlenbach,et al.  Proof theory and computational analysis , 1997, COMPROX.