Generalized Bayesian Likelihood-Free Inference Using Scoring Rules Estimators

We propose a framework for Bayesian Likelihood-Free Inference (LFI) based on Generalized Bayesian Inference using scoring rules (SRs). SRs are used to evaluate probabilistic models given an observation; a proper SR is minimised in expectation when the model corresponds to the data generating process for the observations. Using a strictly proper SR, for which the above minimum is unique, ensures posterior consistency of our method. Further, we prove finite sample posterior consistency and outlier robustness of our posterior for the Kernel and Energy Scores. As the likelihood function is intractable for LFI, we employ consistent estimators of SRs using model simulations in a pseudo-marginal MCMC; we show the target of such chain converges to the exact SR posterior by increasing the number of simulations. Furthermore, we note popular LFI techniques such as Bayesian Synthetic Likelihood (BSL) can be seen as special cases of our framework using only proper (but not strictly so) SR. We empirically validate our consistency and outlier robustness results and show how related approaches do not enjoy these properties. Practically, we use the Energy and Kernel Scores, but our general framework sets the stage for extensions with other scoring rules.

[1]  Bai Jiang,et al.  Approximate Bayesian Computation with Kullback-Leibler Divergence as Data Discrepancy , 2018, AISTATS.

[2]  Christopher C. Drovandi,et al.  Variational Bayes with synthetic likelihood , 2016, Statistics and Computing.

[3]  Alessandro Barp,et al.  Statistical Inference for Generative Models with Maximum Mean Discrepancy , 2019, ArXiv.

[4]  Christophe Croux,et al.  The Gaussian rank correlation estimator: robustness properties , 2010, Statistics and Computing.

[5]  Pier Giovanni Bissiri,et al.  A general framework for updating belief distributions , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[6]  David T. Frazier,et al.  Loss-Based Variational Bayes Prediction , 2021 .

[7]  Theodoros Damoulas,et al.  Generalized Variational Inference: Three arguments for deriving new Posteriors , 2019 .

[8]  Pierre Alquier,et al.  MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy , 2019, AABI.

[9]  Florence Forbes,et al.  Approximate Bayesian Computation Via the Energy Statistic , 2019, IEEE Access.

[10]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[11]  D. Blei Bayesian Nonparametrics I , 2016 .

[12]  A. Dawid,et al.  Theory and applications of proper scoring rules , 2014, 1401.0398.

[13]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[14]  Ryan Martin,et al.  A comparison of learning rate selection methods in generalized Bayesian inference , 2020, 2012.11349.

[15]  Franccois-Xavier Briol,et al.  Robust generalised Bayesian inference for intractable likelihoods , 2021, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[16]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[17]  A. Dawid,et al.  Minimum Scoring Rule Inference , 2014, 1403.3920.

[18]  Jeffrey W. Miller Asymptotic Normality, Concentration, and Coverage of Generalized Posteriors , 2019, J. Mach. Learn. Res..

[19]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[20]  H. Scheffé A Useful Convergence Theorem for Probability Distributions , 1947 .

[21]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[22]  C. Holmes,et al.  Assigning a value to a power likelihood in a general Bayesian model , 2017, 1701.08515.

[23]  Ritabrata Dutta,et al.  ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation , 2017, J. Stat. Softw..

[24]  Christopher C. Drovandi,et al.  Likelihood-free inference in high dimensions with synthetic likelihood , 2018, Comput. Stat. Data Anal..

[25]  Anthony N. Pettitt,et al.  Bayesian indirect inference using a parametric auxiliary model , 2015, 1505.03372.

[26]  Radford M. Neal,et al.  On Bayesian inference for the M/G/1 queue with efficient MCMC sampling , 2014, 1401.5548.

[27]  Wittawat Jitkrittum,et al.  K2-ABC: Approximate Bayesian Computation with Kernel Embeddings , 2015, AISTATS.

[28]  Barry L. Nelson,et al.  Foundations and Methods of Stochastic Simulation , 2021, International Series in Operations Research & Management Science.

[29]  David T. Frazier,et al.  Synthetic Likelihood in Misspecified Models: Consequences and Corrections , 2021 .

[30]  Christopher C. Drovandi,et al.  Accelerating Bayesian Synthetic Likelihood With the Graphical Lasso , 2019, Journal of Computational and Graphical Statistics.

[31]  Qiang Liu,et al.  A Kernelized Stein Discrepancy for Goodness-of-fit Tests , 2016, ICML.

[32]  David T. Frazier,et al.  Bayesian Synthetic Likelihood , 2017, 2305.05120.

[33]  David T. Frazier,et al.  Focused Bayesian Prediction , 2019 .

[34]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[35]  Dennis Prangle,et al.  gk: An R Package for the g-and-k and Generalised g-and-h Distributions , 2017, R J..

[36]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[37]  Barry L. Nelson,et al.  Foundations and Methods of Stochastic Simulation: A First Course , 2013 .

[38]  Christian P. Robert,et al.  Model Misspecification in ABC: Consequences and Diagnostics , 2017, 1708.01974.

[39]  A. Bhattacharya,et al.  Bayesian fractional posteriors , 2016, The Annals of Statistics.

[40]  A. Basu,et al.  Robust Bayes estimation using the density power divergence , 2016 .

[41]  Anthony N. Pettitt,et al.  Likelihood-free Bayesian estimation of multivariate quantile distributions , 2011, Comput. Stat. Data Anal..

[42]  David T. Frazier,et al.  Bayesian Inference Using Synthetic Likelihood: Asymptotics and Adjustments , 2019, Journal of the American Statistical Association.

[43]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[44]  Issei Sato,et al.  γ-ABC: Outlier-Robust Approximate Bayesian Computation based on Robust Divergence Estimator , 2020, ArXiv.

[45]  Thijs van Ommen,et al.  Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It , 2014, 1412.3730.

[46]  David T. Frazier Robust and Efficient Approximate Bayesian Computation: A Minimum Distance Approach , 2020, 2006.14126.

[47]  David J. Nott,et al.  Robust Bayesian synthetic likelihood via a semi-parametric approach , 2018, Stat. Comput..

[48]  Florian Ziel,et al.  Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules , 2019, 1910.07325.

[49]  Jim Q. Smith,et al.  Principles of Bayesian Inference Using General Divergence Criteria , 2018, Entropy.

[50]  James Ridgway,et al.  Probably approximate Bayesian computation: nonasymptotic convergence of ABC under misspecification , 2017, ArXiv.

[51]  F. Giummolè,et al.  Objective Bayesian inference with proper scoring rules , 2017, TEST.

[52]  Jukka Corander,et al.  Likelihood-Free Inference by Ratio Estimation , 2016, Bayesian Analysis.

[53]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[54]  Mathieu Gerber,et al.  Approximate Bayesian computation with the Wasserstein distance , 2019, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[55]  David T. Frazier,et al.  Robust Approximate Bayesian Computation: An Adjustment Approach , 2020, 2008.04099.

[56]  Chris Holmes,et al.  General Bayesian updating and the loss-likelihood bootstrap , 2017, Biometrika.

[57]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[58]  A. Zellner Optimal Information Processing and Bayes's Theorem , 1988 .