Enforcing topological constraints in random field image segmentation

We introduce TopoCut: a new way to integrate knowledge about topological properties (TPs) into random field image segmentation model. Instead of including TPs as additional constraints during minimization of the energy function, we devise an efficient algorithm for modifying the unary potentials such that the resulting segmentation is guaranteed with the desired properties. Our method is more flexible in the sense that it handles more topology constraints than previous methods, which were only able to enforce pairwise or global connectivity. In particular, our method is very fast, making it for the first time possible to enforce global topological properties in practical image segmentation tasks.

[1]  Nikos Komodakis,et al.  Beyond pairwise energies: Efficient optimization for higher-order MRFs , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Herbert Edelsbrunner,et al.  The Robustness of Level Sets , 2010, ESA.

[4]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Pushmeet Kohli,et al.  Minimizing sparse higher order energy functions of discrete variables , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Valerio Pascucci,et al.  Persistence-sensitive simplification functions on 2-manifolds , 2006, SCG '06.

[8]  Dimitris Samaras,et al.  Topology cuts: A novel min-cut/max-flow algorithm for topology preserving segmentation in N-D images , 2008, Comput. Vis. Image Underst..

[9]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Toby Sharp,et al.  Image segmentation with a bounding box prior , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Andrew Blake,et al.  Image Segmentation by Branch-and-Mincut , 2008, ECCV.

[13]  S. Beucher,et al.  Morphological segmentation , 1990, J. Vis. Commun. Image Represent..

[14]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[15]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[16]  Luminita A. Vese,et al.  Self-Repelling Snakes for Topology-Preserving Segmentation Models , 2008, IEEE Transactions on Image Processing.

[17]  Sebastian Nowozin,et al.  Global connectivity potentials for random field models , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[19]  Pushmeet Kohli,et al.  Exact inference in multi-label CRFs with higher order cliques , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[21]  H. Sebastian Seung,et al.  Boundary Learning by Optimization with Topological Constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Sang Uk Lee,et al.  Nonparametric higher-order learning for interactive segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[25]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[26]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[27]  Tai Sing Lee,et al.  Efficient belief propagation for higher-order cliques using linear constraint nodes , 2008, Comput. Vis. Image Underst..

[28]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[29]  Chao Chen,et al.  Topology Noise Removal for Curve and Surface Evolution , 2010, MCV.

[30]  Pushmeet Kohli,et al.  A spatially varying PSF-based prior for alpha matting , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  D. Morozov,et al.  Persistence-sensitive simplication of functions on surfaces in linear time , 2009 .

[32]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.