Iterative Bayesian Network Implementation by Using Annotated Association Rules

This paper concerns the iterative implementation of a knowledge model in a data mining context. Our approach relies on coupling a Bayesian network design with an association rule discovery technique. First, discovered association rule relevancy isenhanced by exploiting the expert knowledge encoded within a Bayesian network, i.e., avoiding to provide trivial rules w.r.t. known dependencies. Moreover, the Bayesian network can be updated thanks to an expert-driven annotation process on computed association rules. Our approach is experimentally validated on the Asia benchmark dataset.

[1]  Szymon Jaroszewicz,et al.  Interestingness of frequent itemsets using Bayesian networks as background knowledge , 2004, KDD.

[2]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[3]  Balaji Padmanabhan,et al.  A Belief-Driven Method for Discovering Unexpected Patterns , 1998, KDD.

[4]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[5]  Jean-François Boulicaut,et al.  Approximation of Frequency Queris by Means of Free-Sets , 2000, PKDD.

[6]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[7]  Wynne Hsu,et al.  Finding Interesting Patterns Using User Expectations , 1999, IEEE Trans. Knowl. Data Eng..

[8]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[9]  Luís Moniz Pereira,et al.  Computational Logic — CL 2000 , 2000, Lecture Notes in Computer Science.

[10]  Jean-François Boulicaut,et al.  Utilisation des réseaux bayésiens dans le cadre de l'extraction de règles d'association , 2006, EGC.

[11]  Jean-François Boulicaut,et al.  Free-Sets: A Condensed Representation of Boolean Data for the Approximation of Frequency Queries , 2004, Data Mining and Knowledge Discovery.

[12]  Jan Komorowski,et al.  Principles of Data Mining and Knowledge Discovery , 2001, Lecture Notes in Computer Science.

[13]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[14]  Marek J. Druzdzel,et al.  Combining Knowledge from Different Sources in Causal Probabilistic Models , 2003, J. Mach. Learn. Res..

[15]  Gerd Stumme,et al.  Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets , 2000, Computational Logic.

[16]  Balaji Padmanabhan,et al.  Small is beautiful: discovering the minimal set of unexpected patterns , 2000, KDD '00.

[17]  U. M. Feyyad Data mining and knowledge discovery: making sense out of data , 1996 .

[18]  Szymon Jaroszewicz,et al.  Fast discovery of unexpected patterns in data, relative to a Bayesian network , 2005, KDD '05.