Equality and Other Theories

Theory reasoning is an important technique for increasing the efficiency of automated deduction systems. The knowledge from a given domain (or theory) is made use of by applying efficient methods for reasoning in that domain. The general purpose foreground reasoner calls a special purpose background reasoner to handle problems from a certain theory.

[1]  Harald Ganzinger,et al.  Elimination of Equality via Transformation with Ordering Constraints , 1998, CADE.

[2]  L. Wos,et al.  Paramodulation and Theorem-Proving in First-Order Theories with Equality , 1983 .

[3]  Daniel Brand,et al.  Proving Theorems with the Modification Method , 1975, SIAM J. Comput..

[4]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[5]  Andrei Voronkov,et al.  Equality Elimination for the Tableau Method , 1996, DISCO.

[6]  Margus Veanes,et al.  Some undecidable problems related to the Herbrand theorem , 1997 .

[7]  Jörg H. Siekmann,et al.  Universal Unification , 1982, GWAI.

[8]  Peter Baumgartner,et al.  Theory Reasoning in Connection Calculi , 1998, Lecture Notes in Computer Science.

[9]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[10]  Neil V. Murray,et al.  Inference with path resolution and semantic graphs , 1987, JACM.

[11]  Wayne Snyder,et al.  Theorem Proving Using Rigid E-Unification Equational Matings , 1987, LICS.

[12]  Domenico Cantone,et al.  What Is Computable Set Theory , 1990 .

[13]  Bernhard Beckert,et al.  Incremental Theory Reasoning Methods for Semantic Tableaux , 1996, TABLEAUX.

[14]  Stig Kanger,et al.  A Simplified Proof Method for Elementary Logic , 1959 .

[15]  Albert Rubio,et al.  Theorem Proving with Ordering and Equality Constrained Clauses , 1995, J. Symb. Comput..

[16]  Wayne Snyder Proof theory for general unification , 1993, Progress in computer science and applied logic.

[17]  Robert E. Shostak,et al.  An algorithm for reasoning about equality , 1977, CACM.

[18]  Peter Baumgartner A Model Elimination Calculus with Built-in Theories , 1992, GWAI.

[19]  Bernhard Beckert,et al.  Semantic Tableaux with Equality , 1997, J. Log. Comput..

[20]  Uwe Petermann,et al.  Rigid Unification by Completion and Rigid Paramodulation , 1994, KI.

[21]  R. Jeffrey Formal Logic: Its Scope and Limits , 1981 .

[22]  Andrei Voronkov,et al.  Simultaneous Regid E-Unification Is Undecidable , 1995, CSL.

[23]  Dexter Kozen Communication: Positive First-Order Logic is NP-Complete , 1981, IBM J. Res. Dev..

[24]  Paliath Narendran,et al.  Rigid E-unification is NP-complete , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[25]  Graham Wrightson,et al.  Automation of Reasoning , 1983 .

[26]  Wayne Snyder,et al.  Designing Unification Procedures Using Transformations: A Survey , 1992 .

[27]  Graem A. Ringwood,et al.  Automated theorem proving (second revised edition) by Wolfgang Bibel, Vieweg 1987 , 1988, The Knowledge Engineering Review.

[28]  Paliath Narendran,et al.  Theorem proving using equational matings and rigid E-unification , 1992, JACM.

[29]  Uwe Petermann,et al.  Completeness of the Pool Calculus with an Open Built-in Theory , 1993, Kurt Gödel Colloquium.

[30]  Ulrich Furbach Theory Reasoning in First Order Calculi , 1994, IS/KI.

[31]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[32]  Alberto Policriti,et al.  T-Theorem Proving I , 1995, J. Symb. Comput..

[33]  Bernhard Beckert,et al.  An Improved Method for Adding Equality to Free Variable Semantic Tableaux , 1992, CADE.

[34]  Eric Kogel Rigid E-Unification Simplified , 1995, TABLEAUX.

[35]  U. Petermann How to build in an open theory into connection calculi , 1992 .

[36]  David A. Plaisted,et al.  Special Cases and Substitutes for Rigid E-Unification , 2000, Applicable Algebra in Engineering, Communication and Computing.

[37]  Malcolm C. Harrison,et al.  Equality-based binary resolution , 1986, JACM.

[38]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[39]  Neil V. Murray,et al.  Theory Links: Applications to Automated Theorem Proving , 1987, J. Symb. Comput..

[40]  R. Smullyan First-Order Logic , 1968 .

[41]  Zbigniew Lis Wynikanie semantyczne a wynikanie formalne , 1960 .

[42]  Margus Veanes,et al.  On Simultaneous Rigid E-Unification , 1997 .

[43]  Greg Nelson,et al.  Fast Decision Procedures Based on Congruence Closure , 1980, JACM.

[44]  Hans-Jürgen Bürckert,et al.  A Resolution Principle for Clauses with Constraints , 1990, CADE.

[45]  Bernhard Beckert,et al.  A Completion-Based Method for Mixed Universal and Rigid E-Unification , 1994, CADE.

[46]  Paliath Narendran,et al.  Rigid E-Unification: NP-Completeness and Applications to Equational Matings , 1990, Inf. Comput..

[47]  Donald W. Loveland,et al.  A Simplified Format for the Model Elimination Theorem-Proving Procedure , 1969, J. ACM.