High resolution atomic force microscopy with an active piezoelectric microcantilever.

Active microcantilevers with on-chip sensing and actuation provide significant advantages in tapping mode Atomic Force Microscopy (AFM). Collocated transduction allows for effective manipulation of cantilever dynamics through feedback control, enabling higher scan rates. However, the adjacency of the sensing and actuation electrodes is known to result in a high level of feedthrough, leading to a low imaging resolution. Readout circuit noise further deteriorates the imaging precision. Here, we investigate the noise sources that affect AFM microcantilevers with collocated aluminum nitride (AlN) actuator-sensor pairs. We reported these cantilevers in earlier work and demonstrated that they display a very low level of feedthrough between the actuation and sensing electrodes. We present a high signal-to-noise ratio (SNR) sensing method that enables us to demonstrate high-resolution AFM on a calibration grating with nm-step silicon carbide (SiC) terraces. Measuring the Lorentzian response of the cantilever's Brownian motion with the on-chip active sensor at resonance enables us to calibrate the dynamic stiffness at the first fundamental resonance mode, without utilizing an optical sensor.

[1]  S. Moheimani,et al.  Modal Actuation and Sensing With an Active AFM Cantilever , 2021, IEEE Sensors Journal.

[2]  S. Moheimani,et al.  High Dynamic Range AFM Cantilever With a Collocated Piezoelectric Actuator-Sensor Pair , 2020, Journal of Microelectromechanical Systems.

[3]  Vincenzo Stornelli,et al.  Traditional Op-Amp and new VCII: A comparison on analog circuits applications , 2019, AEU - International Journal of Electronics and Communications.

[4]  Michael G. Ruppert,et al.  Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing , 2019, Nanotechnology.

[5]  S. O. Reza Moheimani,et al.  On-Chip Feedthrough Cancellation Methods for Microfabricated AFM Cantilevers With Integrated Piezoelectric Transducers , 2017, Journal of Microelectromechanical Systems.

[6]  Ivo W. Rangelow,et al.  Large area fast-AFM scanning with active “Quattro” cantilever arrays , 2016 .

[7]  L. Kienle,et al.  Low temperature aluminum nitride thin films for sensory applications , 2016 .

[8]  Michael G. Ruppert,et al.  High-bandwidth multimode self-sensing in bimodal atomic force microscopy , 2016, Beilstein journal of nanotechnology.

[9]  Georg E. Fantner,et al.  Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging , 2015, Scientific Reports.

[10]  Michael G. Ruppert,et al.  A novel self-sensing technique for tapping-mode atomic force microscopy. , 2013, The Review of scientific instruments.

[11]  Navab Singh,et al.  Molybdenum etching using an SF6, BCl3 and Ar based recipe for high aspect ratio MEMS device fabrication , 2013 .

[12]  H. Gaub,et al.  Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. , 2011, Ultramicroscopy.

[13]  W. Häberle,et al.  Scanning probe microscopy based on magnetoresistive sensing , 2011, Nanotechnology.

[14]  Suhwan Kim,et al.  Charge Amplifier With an Enhanced Frequency Response for SPM-Based Data Storage , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Takeshi Fukuma,et al.  Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions , 2006 .

[16]  Thomas W. Kenny,et al.  Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements , 2004 .

[17]  Cees Otto,et al.  Removing interference and optical feedback artifacts in atomic force microscopy measurements by application of high frequency laser current modulation , 2004 .

[18]  W. J. Moore,et al.  A low noise transimpedance amplifier for cryogenically cooled quartz tuning fork force sensors , 2002 .

[19]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[20]  C. Quate,et al.  AUTOMATED PARALLEL HIGH-SPEED ATOMIC FORCE MICROSCOPY , 1998 .

[21]  Joseph A. Turner,et al.  Analysis of the high-frequency response of atomic force microscope cantilevers , 1997 .

[22]  Thomas Thundat,et al.  Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers , 1995 .

[23]  T. Gabrielson Mechanical-thermal noise in micromachined acoustic and vibration sensors , 1993 .

[24]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[25]  Jan Greve,et al.  A detailed analysis of the optical beam deflection technique for use in atomic force microscopy , 1992 .

[26]  Sidney R. Cohen,et al.  Force microscopy with a bidirectional capacitance sensor , 1990 .

[27]  J. E. Stern,et al.  Force microscope using a fiber‐optic displacement sensor , 1988 .

[28]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[29]  G. McClelland,et al.  Atomic force microscopy using optical interferometry , 1988 .

[30]  H. Hug,et al.  Force Microscopy , 2021, Scanning Probe Microscopy.

[31]  J. Niedziela,et al.  Scanning Tunneling Microscopy , 2008 .

[32]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[33]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.