Cutting force formulation of taper end-mills using differential geometry

In this paper, a mechanistic model to formulate the nonlinear three-dimensional (3-D) cutting forces of taper end-mills by means of differential geometry is presented. The relationship between the tool geometry and the cutting force directions is analyzed. A cutting coefficient estimation procedure is developed. The model is verified by milling carbon steel specimens. For a set of given cutting conditions, the results show close agreement between the measured cutting forces and the model predictions.