Low Level Representation of Data for Visual Sensor Network

Wireless Sensor Network future direction is going towards more complex sensor such as camera sensor. Therefore, a very active research field is Visual Sensor Network. This type of network brings new challenges such as processing and transmitting a massive amount of data generated by the camera sensor. The efforts into decreasing the amount of data to be transmitted are going towards two directions: data encoding and data filtering. This chapter introduces an algorithm for each direction. Visual data encoding is performed by means of Predictive Video Encoding using Phase-Only Correlation function to achieve motion estimation. Visual data filtering is done at the lowest level of abstraction and is performed in three phases: pixel classification, background update and detection. The algorithms involved in each phase are light in terms of complexity and memory resources. DOI: 10.4018/978-1-61350-153-5.ch005

[1]  Kah Phooi Seng,et al.  Visual Information Processing in Wireless Sensor Networks: Technology, Trends and Applications , 2011 .

[2]  Ian F. Akyildiz,et al.  A survey on wireless multimedia sensor networks , 2007, Comput. Networks.

[3]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Wendi B. Heinzelman,et al.  A Survey of Visual Sensor Networks , 2009, Adv. Multim..

[5]  Martin Reisslein,et al.  A survey of multimedia streaming in wireless sensor networks , 2008, IEEE Communications Surveys & Tutorials.

[6]  K. Obraczka,et al.  Managing the information flow in visual sensor networks , 2002, The 5th International Symposium on Wireless Personal Multimedia Communications.

[7]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Petri Mahonen,et al.  Practical Experiences and Design Considerations on Medium Access Control Protocols for Wireless Sensor Networks , 2010 .

[9]  T Koga,et al.  MOTION COMPENSATED INTER-FRAME CODING FOR VIDEO CONFERENCING , 1981 .

[10]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[11]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Yunhao Liu,et al.  Collaborative Sensor Networks: Taxonomy and Design Space , 2010 .

[13]  Nalin Sharda Multimedia Transmission over Wireless Sensor Networks , 2012 .

[14]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[15]  Monica Wachowicz,et al.  Movement-Aware Applications for Sustainable Mobility: Technologies and Approaches , 2010 .

[16]  Yong Wang,et al.  Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet , 2002, ASPLOS X.

[17]  Giusella Dolores Finocchiaro,et al.  Law and Technology: Anonymity and Right to Anonymity in a Connected World , 2010 .

[18]  Aggelos K. Katsaggelos,et al.  Power-Aware Mobile Multimedia: a Survey (Invited Paper) , 2009, J. Commun..

[19]  Hai Jin,et al.  From Principle to Practice , 2010 .

[20]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[21]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[22]  Bing Zeng,et al.  A new three-step search algorithm for block motion estimation , 1994, IEEE Trans. Circuits Syst. Video Technol..

[23]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[25]  Naoki Wakamiya,et al.  Challenging issues in visual sensor networks , 2009, IEEE Wireless Communications.

[26]  David Starobinski,et al.  Robust Localization Using Identifying Codes , 2009 .

[27]  Jens-Rainer Ohm,et al.  Advances in Scalable Video Coding , 2005, Proceedings of the IEEE.

[28]  Kai-Kuang Ma,et al.  A new diamond search algorithm for fast block-matching motion estimation , 2000, IEEE Trans. Image Process..

[29]  Andreas Mitrakas Attribute Hierarchies to Tally Fish , 2010 .

[30]  Kai-Kuang Ma,et al.  Adaptive rood pattern search for fast block-matching motion estimation , 2002, IEEE Trans. Image Process..

[31]  Baris Fidan,et al.  Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking , 2009 .

[32]  Brian J. d'Auriol,et al.  Visualizations of Wireless Sensor Network Data , 2010 .

[33]  Jianhua Lu,et al.  A simple and efficient search algorithm for block-matching motion estimation , 1997, IEEE Trans. Circuits Syst. Video Technol..

[34]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[35]  Kannan Ramchandran,et al.  PRISM: an error-resilient video coding paradigm for wireless networks , 2004, First International Conference on Broadband Networks.

[36]  T. Ebrahimi,et al.  Change detection and background extraction by linear algebra , 2001, Proc. IEEE.

[37]  Yoel Shkolnisky,et al.  The angular difference function and its application to image registration , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Lai-Man Po,et al.  A novel four-step search algorithm for fast block motion estimation , 1996, IEEE Trans. Circuits Syst. Video Technol..

[39]  Tom Francke,et al.  Innovative Applications and Developments of Micro-Pattern Gaseous Detectors , 2014 .