A Class of Infinite Convex Geometries
暂无分享,去创建一个
[1] S. P. Avann. Application of the join-irreducible excess function to semi-modular lattices , 1961 .
[2] M. V. Semyonova,et al. Lattices with unique irreducible decompositions , 2000 .
[3] Bjarni Jónsson,et al. Finite sublattices of a free lattice , 1982 .
[4] R. P. Dilworth,et al. Algebraic theory of lattices , 1973 .
[5] J. B. Nation. Notes on Lattice Theory , 1998 .
[6] Kira Adaricheva,et al. Algebraic convex geometries revisited , 2014 .
[7] Bernard Monjardet,et al. A use for frequently rediscovering a concept , 1985 .
[8] R. P. Dilworth,et al. Decomposition Theory for Lattices without Chain Conditions , 1960 .
[9] V. I. Tumanov,et al. Join-semidistributive lattices and convex geometries , 2003 .
[10] George Grätzer,et al. Lattice theory : special topics and applications , 2014 .
[11] Peter R. Jones,et al. The lattice of convex subsemilattices of a semilattice , 2003 .
[12] Maurice Pouzet,et al. On Scattered Convex Geometries , 2017, Order.
[13] V. A. Gorbunov. Canonical decompositions in complete lattices , 1978 .
[14] Paul H. Edelman,et al. The theory of convex geometries , 1985 .
[15] Ivan Rival,et al. Lattice varieties covering the smallest nonmodular variety. , 1979 .
[16] M. V. Semënova. Lattices of suborders , 1999 .