Time estimation for large scale of data processing in Hadoop MapReduce scenario

Masteroppgave i informasjons- og kommunikasjonsteknologi IKT590 2011 – Universitetet i Agder, Grimstad

[1]  Jimmy J. Lin,et al.  Book Reviews: Data-Intensive Text Processing with MapReduce by Jimmy Lin and Chris Dyer , 2010, CL.

[2]  Tom White,et al.  Hadoop: The Definitive Guide , 2009 .

[3]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[4]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[5]  Vijay P. Kumar,et al.  Analyzing Scalability of Parallel Algorithms and Architectures , 1994, J. Parallel Distributed Comput..

[6]  Hai Jin,et al.  Evaluating MapReduce on Virtual Machines: The Hadoop Case , 2009, CloudCom.

[7]  Efthimios Tambouris,et al.  A Methodology for Performance and Scalability Analysis , 1995, SOFSEM.

[8]  Vipin Kumar,et al.  Isoefficiency: measuring the scalability of parallel algorithms and architectures , 1993, IEEE Parallel & Distributed Technology: Systems & Applications.

[9]  Kiyoung Kim,et al.  MRBench: A Benchmark for MapReduce Framework , 2008, 2008 14th IEEE International Conference on Parallel and Distributed Systems.

[10]  Jie Huang,et al.  The HiBench benchmark suite: Characterization of the MapReduce-based data analysis , 2010, 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010).

[11]  Randy H. Katz,et al.  Improving MapReduce Performance in Heterogeneous Environments , 2008, OSDI.

[12]  Chao-Tung Yang,et al.  Performance Study of Parallel Programming on Cloud Computing Environments Using MapReduce , 2010, 2010 International Conference on Information Science and Applications.