Higher-order Lindley equations
暂无分享,去创建一个
F. I. Karpelevich | M. Kelbert | Y. Suhov | F. Karpelevich | Y. Suhov | Yu. M. Suhov | M. Ya. Kelbert
[1] V. Schmidt,et al. Queues and Point Processes , 1983 .
[2] R. M. Loynes,et al. The stability of a queue with non-independent inter-arrival and service times , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] V. V. Petrov. Sums of Independent Random Variables , 1975 .
[4] D. V. Lindley,et al. The theory of queues with a single server , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[5] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[6] F. Baccelli,et al. A mean-field limit for a class of queueing networks , 1992 .
[7] L. S. Pontryagin,et al. Ordinary Differential Equations , 1963 .
[8] Yu. M. Sukhov,et al. Mathematical theory of queuing networks , 1990 .
[9] David Aldous,et al. The Continuum Random Tree III , 1991 .
[10] D. Aldous. Stochastic Analysis: The Continuum random tree II: an overview , 1991 .
[11] A. Andronov,et al. Qualitative Theory of Second-order Dynamic Systems , 1973 .
[12] F. Baccelli,et al. Palm Probabilities and Stationary Queues , 1987 .
[13] Armand M. Makowski,et al. Queueing models for systems with synchronization constraints , 1989, Proc. IEEE.
[14] R. Lyons. Random Walks and Percolation on Trees , 1990 .
[15] P. Brémaud. Point processes and queues, martingale dynamics , 1983 .