Gap plasmon-based metasurfaces for total control of reflected light

In the quest to miniaturise photonics, it is of paramount importance to control light at the nanoscale. We reveal the main physical mechanism responsible for operation of gap plasmon-based gradient metasurfaces, comprising a periodic arrangement of metal nanobricks, and suggest that two degrees of freedom in the nanobrick geometry allow one to independently control the reflection phases of orthogonal light polarisations. We demonstrate, both theoretically and experimentally, how orthogonal linear polarisations of light at wavelengths close to 800 nm can be manipulated independently, efficiently and in a broad wavelength range by realising polarisation beam splitters and polarisation-independent beam steering, showing at the same time the robustness of metasurface designs towards fabrication tolerances. The presented approach establishes a new class of compact optical components, viz., plasmonic metasurfaces with controlled gradient birefringence, with no dielectric counterparts. It can straightforwardly be adapted to realise new optical components with hitherto inaccessible functionalities.

[1]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[2]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[3]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[4]  H. Mosallaei,et al.  Birefringent reflectarray metasurface for beam engineering in infrared. , 2013, Optics letters.

[5]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[6]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[7]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[8]  Anders Pors,et al.  Efficient and broadband quarter-wave plates by gap-plasmon resonators. , 2013, Optics express.

[9]  Ann Roberts,et al.  Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. , 2010, Nano letters.

[10]  N. Engheta,et al.  Homogenization of plasmonic metasurfaces modeled as transmission-line loads , 2011 .

[11]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[12]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[13]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[14]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[15]  Xin Li,et al.  Flat metasurfaces to focus electromagnetic waves in reflection geometry. , 2012, Optics letters.

[16]  Xueqin Huang,et al.  Optical metamaterial for polarization control , 2009 .

[17]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[18]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[19]  R. J. Bell,et al.  Generalized Laws of Refraction and Reflection , 1969 .

[20]  S. Bozhevolnyi,et al.  Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons , 2009 .

[21]  David R. Smith,et al.  Reconciliation of generalized refraction with diffraction theory. , 2012, Optics letters.

[22]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[23]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[24]  Morten Willatzen,et al.  Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. , 2011, Optics letters.

[25]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[26]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[27]  A. Roberts,et al.  Plasmonic quarter-wave plate. , 2012, Optics letters.

[28]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[29]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[30]  Harald Giessen,et al.  Controlling the interaction between localized and delocalized surface plasmon modes : Experiment and numerical calculations , 2006 .

[31]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[32]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.