Iterative Filtering as an Alternative Algorithm for Empirical Mode Decomposition
暂无分享,去创建一个
Yang Wang | Haomin Zhou | Luan Lin | Haomin Zhou | Yang Wang | Luan Lin
[1] Norden E. Huang,et al. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..
[2] Darryll J. Pines,et al. Health monitoring of one-dimensional structures using empirical mode decomposition and the Hilbert-Huang transform , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.
[3] M. S. Woolfson,et al. Application of empirical mode decomposition to heart rate variability analysis , 2001, Medical and Biological Engineering and Computing.
[4] Khaled H. Hamed,et al. Time-frequency analysis , 2003 .
[5] Gabriel Rilling,et al. Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.
[6] Gabriel Rilling,et al. EMD Equivalent Filter Banks, from Interpretation to Applications , 2005 .
[7] Boualem Boashash,et al. Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.
[8] S. Mallat. A wavelet tour of signal processing , 1998 .
[9] Yuesheng Xu,et al. A B-spline approach for empirical mode decompositions , 2006, Adv. Comput. Math..
[10] Reginald N. Meeson,et al. HHT SIFTING AND FILTERING , 2005 .
[11] Norden E. Huang,et al. STATISTICAL SIGNIFICANCE TEST OF INTRINSIC MODE FUNCTIONS , 2010 .
[12] Boualem Boashash,et al. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.
[13] Reginald N. Meeson,et al. HHT Sifting and Adaptive Filtering , 2003 .
[14] N. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[15] N. Huang,et al. A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] N. Huang,et al. A new view of nonlinear water waves: the Hilbert spectrum , 1999 .