Optimal power flow using differential evolution algorithm

This paper presents an efficient and reliable evolutionary-based approach to solve the optimal power flow (OPF) problem. The proposed approach employs differential evolution algorithm for optimal settings of OPF problem control variables. The proposed approach is examined and tested on the standard IEEE 30-bus test system with different objectives that reflect fuel cost minimization, voltage profile improvement, and voltage stability enhancement. The proposed approach results are compared with the results reported in the literature. The results show the effectiveness and robustness of the proposed approach.

[1]  James A. Momoh,et al.  Improved interior point method for OPF problems , 1999 .

[2]  M. A. Abido,et al.  Optimal power flow using particle swarm optimization , 2002 .

[3]  K. Fahd,et al.  Optimal Power Flow Using Tabu Search Algorithm , 2002 .

[4]  K. Lee,et al.  A United Approach to Optimal Real and Reactive Power Dispatch , 1985, IEEE Transactions on Power Apparatus and Systems.

[5]  R. Mota-Palomino,et al.  Sparse Reactive Power Scheduling by a Penalty Function - Linear Programming Technique , 1986, IEEE Transactions on Power Systems.

[6]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[7]  Vladimiro Miranda,et al.  Evolutionary computation in power systems , 1998 .

[8]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[9]  Mostefa Rahli,et al.  Optimal load flow using sequential unconstrained minimization technique (SUMT) method under power transmission losses minimization , 1999 .

[10]  W. O. Stadlin,et al.  Voltage Versus Reactive Current Model for Dispatch and Control , 1982, IEEE Power Engineering Review.

[11]  Rainer Storn,et al.  Differential evolution design of an IIR-filter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[12]  Nguyen V. Thoai A global optimization approach for solving the convex multiplicative programming problem , 1991, J. Glob. Optim..

[13]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2002, 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings..

[14]  R. Yokoyama,et al.  Improved genetic algorithms for optimal power flow under both normal and contingent operation states , 1997 .

[15]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[16]  Amilton C. Santos,et al.  Optimal-power-flow solution by Newton's method applied to an augmented Lagrangian function , 1995 .

[17]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[18]  H. L. Happ,et al.  OPTIMAL POWER DISPATCH -A COMPREHENSIVE SURVEY , 1977 .

[19]  D. Karaboga,et al.  A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm , 2004 .

[20]  William F. Tinney,et al.  Optimal Power Flow Solutions , 1968 .

[21]  O. Alsac,et al.  Optimal Load Flow with Steady-State Security , 1974 .

[22]  Mohammad Ali Abido,et al.  Multiobjective Optimal VAR Dispatch Using Strength Pareto Evolutionary Algorithm , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[23]  H. Happ,et al.  Quadratically Convergent Optimal Power Flow , 1984, IEEE Transactions on Power Apparatus and Systems.

[24]  Lawrence Hasdorff,et al.  Economic Dispatch Using Quadratic Programming , 1973 .

[25]  R. Yokoyama,et al.  Constrained Load Flow Using Recursive Quadratic Programming , 1987, IEEE Transactions on Power Systems.

[26]  Mahmoud A. Abo-Sinna,et al.  A solution to the optimal power flow using genetic algorithm , 2004, Appl. Math. Comput..

[27]  R. Adapa,et al.  A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches , 1999 .

[28]  D. Sun,et al.  Optimal Power Flow Based Upon P-Q Decomposition , 1982, IEEE Transactions on Power Apparatus and Systems.

[29]  K. C. Mamandur,et al.  Optimal Control of Reactive Power flow for Improvements in Voltage Profiles and for Real Power Loss Minimization , 1981, IEEE Transactions on Power Apparatus and Systems.

[30]  H.H. Happ,et al.  Optimal power dispatchߞA comprehensive survey , 1977, IEEE Transactions on Power Apparatus and Systems.

[31]  Adam Semlyen,et al.  Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology , 1989 .

[32]  R. Adapa,et al.  A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods , 1999 .