On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix

Abstract We revisit the problem of identifying a Mueller matrix M through N = [Mtilde]GM where G is the familiar Minkowski matrix diag (1, −1, −1, −1) and the tilde denotes matrix transposition. Using the standard methods of reduction of symmetric matrices (tensors) to their canonical forms in Minkowski space, we then show that there exist only two algebraically distinct types of Mueller matrices, which we call types I and II, and obtain the necessary and sufficient conditions for a Mueller matrix in terms of the eigenproperties of the associated N matrix. These conditions identify a Mueller matrix precisely and completely unlike the conditions derived earlier by Givens and Kostinski or by van der Mee. Observing that every Mueller matrix discussed hitherto in the literature is of the type I only, we construct examples of type-II Mueller matrices using the more familiar type-I (in fact pure Mueller) Mueller matrices. Further, we show that every G eigenvalue of an N matrix (see section 2 for a definition) i...

[1]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[2]  C. Moller,et al.  The Theory of Relativity , 1953, The Mathematical Gazette.

[3]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[4]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[5]  A. Gerrard,et al.  Introduction to Matrix Methods in Optics , 1975 .

[6]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[7]  Rasheed M. A. Azzam,et al.  Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus , 1978 .

[8]  P. M. Morse,et al.  Relativity: The Special Theory , 1957 .

[9]  On rotations in a pseudo-Euclidean space and proper Lorentz transformations , 1981 .

[10]  R. Simon The connection between Mueller and Jones matrices of polarization optics , 1982 .

[11]  D. Tsankov,et al.  Measurement of the IR-ORD of Induced Cholesteric Solutions in Presence of Linear Dichroism , 1984 .

[12]  S. Cloude Group theory and polarisation algebra , 1986 .

[13]  Joop W. Hovenier,et al.  Conditions for the elements of the scattering matrix , 1986 .

[14]  L. Mandel,et al.  Relationship between Jones and Mueller matrices for random media , 1987 .

[15]  W. Boerner,et al.  Optimal reception of partially polarized waves , 1988 .

[16]  J. Hovenier,et al.  Structure of matrices transforming Stokes parameters , 1992 .

[17]  Z. Xing,et al.  On the Deterministic and Non-deterministic Mueller Matrix , 1992 .

[18]  Alexander B. Kostinski,et al.  A Simple Necessary and Sufficient Condition on Physically Realizable Mueller Matrices , 1993 .

[19]  D. Nagirner Constraints on matrices transforming Stokes vectors , 1993 .

[20]  C. Mee An eigenvalue criterion for matrices transforming Stokes parameters , 1993 .

[21]  R. Sridhar,et al.  Normal form for Mueller Matrices in Polarization Optics , 1994 .

[22]  Donald G. M. Anderson,et al.  Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix , 1994 .

[23]  K. S. Rao Linear Algebra and Group Theory for Physicists , 1996 .