Symbolic analysis of (MO)(I)CCI(II)(III)‐based analog circuits

New nullor-based models are introduced to describe the behavior of the first generation current conveyor (CCI), second generation current conveyor (CCII), third generation current conveyor (CCIII), their inverting equivalents (ICCI(II)(III)), and/or their multiple output topologies (MO(I)CCI(II)(III)). These nullor equivalents include only grounded resistors to improve the formulation of equations in symbolic nodal analysis. In this manner, it is highlighted the usefulness of the proposed models to calculate analytical expressions in MO(I)CCI(II)(III)-based analog circuits. Copyright q 2009 John Wiley & Sons, Ltd.

[1]  J. Wu,et al.  Current-mode ladder filters using multiple output current conveyors , 1996 .

[2]  Alfonso Carlosena,et al.  Computational synthesis of arbitrary floating impedances , 1998, Int. J. Circuit Theory Appl..

[3]  Ahmed M. Soliman,et al.  The inverting second generation current conveyors as universal building blocks , 2008 .

[4]  Shahram Minaei,et al.  A new CMOS electronically tunable current conveyor and its application to current-mode filters , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Ahmed M. Soliman,et al.  Generation of Grounded capacitor ICCII-Based Band-Pass Filters , 2007, J. Circuits Syst. Comput..

[6]  Heinrich Floberg Symbolic Analysis in Analog Integrated Circuit Design , 1997 .

[7]  Ahmed M. Soliman Current mode filters using two output inverting CCII , 2008 .

[8]  J. B. Grimbleby Symbolic analysis of networks containing current conveyors , 1992 .

[9]  Shahram Minaei,et al.  Limitations of the Simulated Inductors Based on a Single Current Conveyor , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Francisco V. Fernández,et al.  Symbolic analysis techniques : applications to analog design automation , 1998 .

[11]  Oguzhan Cicekoglu,et al.  A novel floating lossy inductance realization topology with NICs using current conveyors , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Giuseppe Ferri,et al.  Noise Determination in Differential Pair-Based Second Generation Current Conveyors , 2004 .

[13]  Chun-Ming Chang,et al.  High Input Impedance Voltage-Mode Universal Biquadratic Filter with One Input and Five Outputs Using Current Conveyors , 2006 .

[14]  George S. Moschytz,et al.  Nullators and norators in voltage to current mode transformations , 1993, Int. J. Circuit Theory Appl..

[15]  Worapong Tangsrirat,et al.  Electronically tunable low-component-count current-mode biquadratic filter using dual-output current followers , 2007 .

[16]  Georges Gielen,et al.  Efficient DDD-based symbolic analysis of linear analog circuits , 2002 .

[17]  Wanlop Surakampontorn,et al.  Efficient implementation of tunable ladder filters using multi-output current controlled conveyors , 2008 .

[18]  R. K. Sharma,et al.  On the Realization of Universal Current Mode Biquads Using a Single CFOA , 2004 .

[19]  J. A. Svoboda Op amp relocation and the complementary transformation , 1990, Int. J. Circuit Theory Appl..

[20]  M.L. Liou,et al.  Computer-aided analysis of electronic circuits: Algorithms and computational techniques , 1977, Proceedings of the IEEE.

[21]  George S. Moschytz Linear integrated networks: fundamentals , 1974 .

[22]  Sheldon X.-D. Tan Symbolic Analysis of Analog Circuits By Boolean Logic Operations , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[23]  Esteban Tlelo-Cuautle,et al.  Computing Symbolic Expressions in Analog Circuits Using Nullors , 2005, Computación y Sistemas.

[24]  Esteban Tlelo-Cuautle,et al.  SIASCA: Interactive System for the Symbolic Analysis of Analog Circuits , 2004, IEICE Electron. Express.

[25]  J. A. Svoboda Unique solvability of RLC nullor networks , 1983 .

[26]  P. V. Ananda Mohan,et al.  Floating Capacitance Simulation Using Current Conveyors , 2005, J. Circuits Syst. Comput..

[27]  Georges Gielen,et al.  Symbolic analysis methods and applications for analog circuits: a tutorial overview , 1994, Proc. IEEE.

[28]  Samir Ben Salem,et al.  A Novel CCII-Based Tunable inductance and High Frequency Current-Mode Band Pass Filter Application , 2006, J. Circuits Syst. Comput..

[29]  Erik Bruun Class AB CMOS first-generation current conveyor , 1995 .

[30]  Ali Ümit Keskin,et al.  Insensitive high-output impedance minimum configuration SITO-type current-mode biquad using dual-output current conveyors and grounded passive components , 2007 .

[31]  Rob A. Rutenbar,et al.  Computer-Aided Design of Analog Integrated Circuits and Systems , 2002 .

[32]  J. A. Svoboda,et al.  Current conveyors, operational amplifiers and nullors , 1989 .

[33]  J. B. Grimbleby Symbolic analysis of circuits containing active elements , 1981 .

[34]  Erik Bruun Analysis of the Noise Characteristics of CMOS Current Conveyors , 1997 .

[35]  Brett Wilson Tutorial review Trends in current conveyor and current-mode amplifier design , 1992 .

[36]  Worapong Tangsrirat,et al.  Electronically Tunable Current-Mode Universal Filter Employing Only Plus-Type Current-Controlled Conveyors and Grounded Capacitors , 2006 .

[37]  Ahmed M. Soliman,et al.  Analytical Synthesis of Low-Sensitivity High-Order Voltage-Mode DDCC and FDCCII-Grounded R and C All-Pass Filter Structures , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Raj Senani,et al.  Bibliography on Nullors and Their Applications in Circuit Analysis, Synthesis and Design , 2002 .

[39]  Esteban Ylelo Cuautle,et al.  Symbolic Computation of NF of Transistor Circuits , 2004 .

[40]  Chun-Yueh Huang,et al.  Rearrangement of mirror elements , 2006 .

[41]  Ahmed M. Soliman,et al.  High Accuracy Class AB CCII , 2004 .

[42]  Kenneth C. Smith,et al.  The current conveyor—A new circuit building block , 1968 .

[43]  Shahram Minaei A new high performance CMOS third generation current conveyor (CCIII) and its application , 2003 .

[44]  Georges Gielen,et al.  Symbolic analysis for automated design of analog integrated circuits , 1991, The Kluwer international series in engineering and computer science.

[45]  Rob A. Rutenbar,et al.  Canonical Symbolic Analysis of Large Analog Circuits with Determinant Decision Diagrams , 2002 .

[46]  Erkan Yuce,et al.  A novel dual output universal filter topology using a single current conveyor , 2007 .

[47]  J. Cel,et al.  Adjoint nullator-norator networks , 1994, Int. J. Circuit Theory Appl..

[48]  A. Arbel Towards a Perfect CMOS CCII , 1997 .

[49]  Esteban Tlelo-Cuautle,et al.  Symbolic analysis: a formulation approach by manipulating data structures , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[50]  Soliman A. Mahmoud New Fully-Differential CMOS Second-Generation Current Conveyer , 2006 .

[51]  Shahram Minaei,et al.  Universal current-mode filters and parasitic impedance effects on the filter performances , 2008 .

[52]  Esteban Tlelo-Cuautle,et al.  Design of Current-Mode Gm-C Filters from the Transformation of Opamp-RC Filters , 2007 .

[53]  H. Schmid,et al.  Approximating the universal active element , 2000 .

[54]  Ahmed M. Soliman,et al.  Voltage mode and current mode Tow Thomas bi‐quadratic filters using inverting CCII , 2007, Int. J. Circuit Theory Appl..

[55]  A. Carlosena,et al.  A cautionary note on stability of current conveyor-based circuits , 1998 .

[56]  K. Smith,et al.  A second-generation current conveyor and its applications , 1970, IEEE Transactions on Circuit Theory.

[57]  J. A. Svoboda,et al.  Using nullors to analyse linear networks , 1986 .

[58]  Sheldon X.-D. Tan,et al.  Hierarchical approach to exact symbolic analysis of large analog circuits , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[59]  C. Sanchez-Lopez,et al.  Computing simplified noise-symbolic-expressions in CMOS CCs by applying SPA and SAG , 2007, 2007 Internatonal Conference on Microelectronics.

[60]  Vinod Kumar Singh,et al.  Dual Function Capability of Recently Proposed Four-current-conveyor-based Vm Biquad , 2005, J. Circuits Syst. Comput..

[61]  Esteban Tlelo-Cuautle,et al.  Evolutionary Electronics: Automatic Synthesis of Analog Circuits by GAs , 2008 .

[62]  Shahram Minaei,et al.  ICCII-Based Voltage-Mode Filter with Single Input and Six Outputs Employing Grounded Capacitors , 2006 .

[63]  Francisco V. Fernández,et al.  Error control in simplification before generation algorithms for symbolic analysis of large analogue circuits , 1999 .

[64]  Georges G. E. Gielen,et al.  Circuit simplification for the symbolic analysis of analogintegrated circuits , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[65]  I. A. Awad,et al.  Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications , 1999 .

[66]  Peter Aronhime,et al.  Applications of a first-generation current conveyor in current-mode circuits , 1990 .

[67]  Ranga Vemuri,et al.  A regularity-based hierarchical symbolic analysis method for large-scale analog networks , 2001, Proceedings Design, Automation and Test in Europe. Conference and Exhibition 2001.

[68]  Samir Ben Salem,et al.  A high performances CMOS CCII and high frequency applications , 2006 .

[69]  Mohamad Sawan,et al.  Design of Monolithic Tunable CMOS Band-Pass Filter Using Current Feedback Operational Amplifiers , 2005 .

[70]  C. Sanchez-Lopez,et al.  Behavioral model generation for symbolic analysis of analog integrated circuits , 2005, International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005..

[71]  Balwant Godara,et al.  Versatile wideband impedance matching circuit based on current conveyors , 2007 .

[72]  Herve Barthelemy,et al.  A novel class AB first generation current conveyor , 1999 .

[73]  Erkan Yuce,et al.  Universal resistorless current-mode filters employing CCCIIs , 2008 .

[74]  Alain Fabre Third-generation current conveyor: a new helpful active element , 1995 .

[75]  Ahmed M. Soliman,et al.  A time-delay technique to improve GBW on negative feedback amplifiers , 2008 .

[76]  Raj Senani,et al.  A systematic realization of current mode universal biquad filters , 2006 .

[77]  Patrick Wambacq,et al.  Algorithm for efficient symbolic analysis of large analogue circuits , 1994 .

[78]  Esteban Tlelo-Cuautle,et al.  Synthesis of CCII-s by superimposing VFs and CFs through genetic operations , 2008, IEICE Electron. Express.

[79]  Soliman A. Mahmoud,et al.  Low-Voltage CMOS Current Feedback Operational Amplifier and Its Application , 2007 .

[80]  Raj Senani,et al.  Multifunction CM/VM Biquads Realized with a Single CFOA and Grounded Capacitors , 2003 .

[81]  Ahmed M. Soliman,et al.  Generation, modeling, and analysis of CCII-based gyrators using the generalized symbolic framework for linear active circuits , 2008 .

[82]  Esteban Tlelo-Cuautle,et al.  Automatic Synthesis of VFs and VMs by Applying Genetic Algorithms , 2008 .

[83]  Mourad Loulou,et al.  Synthesis of CCIIs and Design of Simulated CCII Based Floating Inductances , 2007, 2007 14th IEEE International Conference on Electronics, Circuits and Systems.