On-surface molecular nanoarchitectonics: From self-assembly to directed assembly

[1]  Derck Schlettwein,et al.  A novel route to molecular self-assembly: self-intermixed monolayer phases. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  P. Liu,et al.  Ullmann Reaction of Aryl Chlorides on Various Surfaces and the Application in Stepwise Growth of 2D Covalent Organic Frameworks. , 2016, Organic letters.

[3]  C. Pignedoli,et al.  Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. , 2012, ACS nano.

[4]  J. Ortega,et al.  Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires , 2016, ACS nano.

[5]  Mathieu Abel,et al.  Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. , 2011, Journal of the American Chemical Society.

[6]  H. Sevinçli,et al.  Superlattice structures of graphene-based armchair nanoribbons , 2007, 0711.2414.

[7]  B. Parkinson,et al.  Scanning tunneling microscopy study of the coverage-dependent structures of pentacene on Au(111) , 2003 .

[8]  Wei Chen,et al.  Scanning tunneling microscopy investigation of self-assembled CuPc/F16CuPc binary superstructures on graphite. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[9]  K. Müllen,et al.  New advances in nanographene chemistry. , 2015, Chemical Society reviews.

[10]  M. Prato,et al.  Trimodular engineering of linear supramolecular miniatures on Ag(111) surfaces controlled by complementary triple hydrogen bonds. , 2008, Angewandte Chemie.

[11]  Reinhard Berger,et al.  Graphene nanoribbon heterojunctions. , 2014, Nature nanotechnology.

[12]  K. Kern,et al.  Ordering and stabilization of metal-organic coordination chains by hierarchical assembly through hydrogen bonding at a surface. , 2008, Angewandte Chemie.

[13]  Mihaela D. Enache,et al.  Aggregation and contingent metal/surface reactivity of 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111). , 2010, Chemistry.

[14]  Wei Chen,et al.  Low-Temperature Scanning Tunneling Microscopy Investigation of Epitaxial Growth of F16CuPc Thin Films on Ag(111) , 2008 .

[15]  N. Champness,et al.  Hydrogen-bonded PTCDA-melamine networks and mixed phases. , 2006, The journal of physical chemistry. B.

[16]  M. B. Lee,et al.  Long-range periodicity in c(8 × 2) benzoate/Cu(110): a combined STM, LEED and HREELS study , 1997 .

[17]  P. Weiss,et al.  Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. , 2014, ACS nano.

[18]  H. Dosch,et al.  2D supramolecular self-assembly of binary organic monolayers. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  Y. Wakayama Assembly Process and Epitaxy of the F16CuPc Monolayer on Cu(111) , 2007 .

[20]  F. Fischer,et al.  Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. , 2013, ACS nano.

[21]  K. Müllen,et al.  Self-assembly of periodic bicomponent wires and ribbons. , 2007, Angewandte Chemie.

[22]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[23]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[24]  W. Heckl,et al.  Synthesis of two-dimensional phenylene-boroxine networks through in vacuo condensation and on-surface radical addition. , 2011, Chemical communications.

[25]  S. Mannsfeld,et al.  Understanding organic-inorganic heteroepitaxial growth of molecules on crystalline substrates : Experiment and theory , 2005 .

[26]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical Review Letters.

[27]  A. Arnau,et al.  Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy. , 2006, The journal of physical chemistry. B.

[28]  B. Hammer,et al.  A surface coordination network based on copper adatom trimers. , 2014, Angewandte Chemie.

[29]  Lei Dong,et al.  Surface-Activated Coupling Reactions Confined on a Surface. , 2015, Accounts of chemical research.

[30]  E. Williams,et al.  Coverage dependent supramolecular structures: C60:ACA monolayers on Ag(111). , 2006, Journal of the American Chemical Society.

[31]  F. Ullmann,et al.  Ueber Synthesen in der Biphenylreihe , 1901 .

[32]  Daniel J. Rizzo,et al.  Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons. , 2015, Journal of the American Chemical Society.

[33]  Timur K. Kim,et al.  Multimorphism in molecular monolayers: Pentacene on Cu(110) , 2009 .

[34]  F. Rosei,et al.  Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization. , 2014, ACS nano.

[35]  D. J. Mowbray,et al.  Understanding energy-level alignment in donor-acceptor/metal interfaces from core-level shifts. , 2013, ACS nano.

[36]  C. Pignedoli,et al.  Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order. , 2015, Journal of the American Chemical Society.

[37]  K. W. Hipps,et al.  Scanning Tunneling Microscopy of Metal Phthalocyanines: d6 and d8 Cases , 1997 .

[38]  C. Pignedoli,et al.  Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. , 2010, Journal of the American Chemical Society.

[39]  Günter,et al.  Building Supramolecular Nanostructures at Surfaces by Hydrogen Bonding Fruitful discussions with A. de Vita, B. Müller, and H. Brune are acknowleged. , 2000, Angewandte Chemie.

[40]  Katsuhiko Ariga,et al.  Regulating the stability of 2D crystal structures using an oxidation state-dependent molecular conformation. , 2006, Chemical communications.

[41]  Thomas Dienel,et al.  On-surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology References and Notes , 2022 .

[42]  E. Meyer,et al.  Atomically controlled substitutional boron-doping of graphene nanoribbons , 2015, Nature Communications.

[43]  J. Barth,et al.  Supramolecular assembly of interfacial nanoporous networks with simultaneous expression of metal-organic and organic-bonding motifs. , 2013, Chemistry.

[44]  S. Mashiko,et al.  Nonplanar adsorption and orientational ordering of porphyrin molecules on Au(111) , 2001 .

[45]  T. Taketsugu,et al.  From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy. , 2015, ACS nano.

[46]  L. Ferrighi,et al.  Surface-Confined Polymerization of Halogenated Polyacenes: The Case of Dibromotetracene on Ag(110) , 2016 .

[47]  Ari Harju,et al.  Ultra-narrow metallic armchair graphene nanoribbons , 2015, Nature Communications.

[48]  F. Hanke,et al.  Zipping up: cooperativity drives the synthesis of graphene nanoribbons. , 2011, Journal of the American Chemical Society.

[49]  A STM perspective on covalent intermolecular coupling reactions on surfaces , 2011 .

[50]  Á. Rubio,et al.  Copper-phthalocyanine based metal-organic interfaces: the effect of fluorination, the substrate, and its symmetry. , 2010, The Journal of chemical physics.

[51]  T. Jung,et al.  Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface , 2009, Science.

[52]  W. Xu,et al.  Single-molecule insight into Wurtz reactions on metal surfaces. , 2016, Physical chemistry chemical physics : PCCP.

[53]  K. Kern,et al.  Real-time single-molecule imaging of the formation and dynamics of coordination compounds. , 2002, Angewandte Chemie.

[54]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[55]  B. Doyle,et al.  Crystallographic and electronic structure of self-assembled DIP monolayers on Au(111) substrates , 2008 .

[56]  L. Perdigão,et al.  Bimolecular networks and supramolecular traps on Au(111). , 2006, The journal of physical chemistry. B.

[57]  Kalpataru Das,et al.  Extended two-dimensional metal-organic frameworks based on thiolate-copper coordination bonds. , 2011, Journal of the American Chemical Society.

[58]  A. Arnau,et al.  Bonding and Charge Transfer in Metal–Organic Coordination Networks on Au(111) with Strong Acceptor Molecules , 2012 .

[59]  UHV-STM studies on the structures of alkanedithiol self-assembled monolayers , 1999 .

[60]  T. Jung,et al.  Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. , 2008, Angewandte Chemie.

[61]  Ting Cao,et al.  Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. , 2015, Nature nanotechnology.

[62]  L. Bartels,et al.  A Homomolecular Porous Network at a Cu(111) Surface , 2006, Science.

[63]  Xuemei Zhang,et al.  On-surface single molecule synthesis chemistry: a promising bottom-up approach towards functional surfaces. , 2013, Nanoscale.

[64]  K. Sun,et al.  On-surface synthesis of rylene-type graphene nanoribbons. , 2015, Journal of the American Chemical Society.

[65]  T. Kawai,et al.  Two-dimensional self-assembly of uracil molecules on Cu(111) surfaces: a low-temperature STM study , 1997 .

[66]  M. Persson,et al.  STM fingerprint of molecule-adatom interactions in a self-assembled metal-organic surface coordination network on Cu(111). , 2010, Physical chemistry chemical physics : PCCP.

[67]  Angel Rubio,et al.  Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions , 2013, Science.

[68]  P. Liu,et al.  Self-assembly of metal-organic coordination networks using on-surface synthesized ligands. , 2014, Chemical communications.

[69]  M. Wahl,et al.  Controlling molecular assembly in two dimensions: the concentration dependence of thermally induced 2D aggregation of molecules on a metal surface. , 2005, Angewandte Chemie.

[70]  W. Hieringer,et al.  Combined Photoemission and Scanning Tunneling Microscopy Study of the Surface-Assisted Ullmann Coupling Reaction , 2014 .

[71]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[72]  A. Kasperski,et al.  Dynamics and thermal stability of surface-confined metal–organic chains , 2016 .

[73]  N. Oxtoby,et al.  Controlling molecular deposition and layer structure with supramolecular surface assemblies , 2003, Nature.

[74]  P. Jelínek,et al.  Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl-Aryl Bond Formation. , 2016, Journal of the American Chemical Society.

[75]  M. Persson,et al.  Nano-architectures by covalent assembly of molecular building blocks. , 2007, Nature nanotechnology.

[76]  T. Bein,et al.  Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. , 2011, ACS nano.

[77]  N. Mårtensson,et al.  Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons : Combined Core-Level Spectroscopy and STM Study , 2014 .

[78]  K. Kern,et al.  Hierarchical assembly of two-dimensional homochiral nanocavity arrays. , 2003, Journal of the American Chemical Society.

[79]  J. Pflaum,et al.  Tunable two-dimensional binary molecular networks. , 2010, Small.

[80]  B. Doyle,et al.  Customized Electronic Coupling in Self‐Assembled Donor–Acceptor Nanostructures , 2009 .

[81]  M. Wahl,et al.  Lateral manipulation for the positioning of molecular guests within the confinements of a highly stable self-assembled organic surface network. , 2007, Small.

[82]  Cheol-Hwan Park,et al.  Self-interaction in Green ’ s-function theory of the hydrogen atom , 2007 .

[83]  Shiyoshi Yokoyama,et al.  Selective assembly on a surface of supramolecular aggregates with controlled size and shape , 2001, Nature.

[84]  B. Doyle,et al.  Balancing Intermolecular and Molecule–Substrate Interactions in Supramolecular Assemblies , 2009 .

[85]  H. Güntherodt,et al.  Adsorption and two-dimensional phases of a large polar molecule: Sub-phthalocyanine on Ag(111) , 2003 .

[86]  K. Kern,et al.  Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. , 2003, Angewandte Chemie.

[87]  Oded Hod,et al.  Electronic structure and stability of semiconducting graphene nanoribbons. , 2006, Nano letters.

[88]  P. Ruffieux,et al.  On‐Surface Synthesis of Atomically Precise Graphene Nanoribbons , 2016, Advanced materials.

[89]  Jonas Björk,et al.  Homo-coupling of terminal alkynes on a noble metal surface , 2012, Nature Communications.

[90]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[91]  E. Umbach,et al.  Surface “architecture” with large organic molecules: interface order and epitaxy , 1998 .

[92]  Qiang Sun,et al.  On-surface synthesis of organometallic complex via metal-alkene interactions. , 2014, Chemical communications.

[93]  C. Pignedoli,et al.  Tailoring low-dimensional organic semiconductor nanostructures. , 2009, Nano letters.

[94]  Yutaka Wakayama,et al.  Solid-state reactions in binary molecular assemblies of F₁₆CuPc and pentacene. , 2011, ACS nano.

[95]  Daniel J. Rizzo,et al.  Bottom-Up Synthesis of N = 13 Sulfur-Doped Graphene Nanoribbons , 2016 .

[96]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[97]  P. Szabelski,et al.  On-surface synthesis of two-dimensional imine polymers with a tunable band gap: a combined STM, DFT and Monte Carlo investigation. , 2016, Nanoscale.

[98]  S. Du,et al.  Adsorption Behavior of Iron Phthalocyanine on Au(111) Surface at Submonolayer Coverage , 2007 .

[99]  J. Barth,et al.  Controlled manipulation of gadolinium-coordinated supramolecules by low-temperature scanning tunneling microscopy. , 2014, Nano letters.

[100]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[101]  K. Kern,et al.  Direct observation of chiral metal-organic complexes assembled on a Cu100 surface. , 2002, Journal of the American Chemical Society.

[102]  K. Kern,et al.  Hierarchical Assembly and Reticulation of Two-Dimensional Mn- and Ni–TCNQx (x = 1, 2, 4) Coordination Structures on a Metal Surface , 2011 .