Conductivity of granular media with stagnant interstitial fluids via thermal particle dynamics simulation

Abstract In this paper, a numerical technique––the thermal particle dynamics method (TPD)––is extended to study heat conduction in granular media in the presence of stagnant interstitial fluids. The method, which generates a multi-particle simulation by explicitly modeling many two-particle interactions, allows bed heterogeneities to be directly included and dynamic temperature distributions to be obtained at the particle-level. Comparison with experimental data shows that TPD yields quantitatively accurate values of the effective thermal conductivity without introducing new adjustable parameters for a wide range of stagnant interstitial media. The model not only sheds light on fundamental issues in heat conduction in particulate materials, but also provides a valuable test bed for existing continuous theories.

[1]  Joseph J. McCarthy,et al.  Stress effects on the conductivity of particulate beds , 2002 .

[2]  M. M. Yovanovich,et al.  Thermal contact resistance across elastically deformed spheres. , 1967 .

[3]  R. Mashelkar,et al.  Thermal Conductivity of Structured Liquids , 1987 .

[4]  I. Amdur,et al.  Kinetic Theory of Gases , 1959 .

[5]  J. Smith,et al.  Thermal Conductivity of Beds of Spherical Particles , 1963 .

[6]  R. Vachon,et al.  A prediction of the bounds on the effective thermal conductivity of granular materials , 1977 .

[7]  Aibing Yu,et al.  Dynamic simulation of the centripetal packing of mono-sized spheres , 1999 .

[8]  Alexander Z. Zinchenko,et al.  Effective conductivity of loaded granular materials by numerical simulation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Vishwanath Prasad,et al.  Evaluation of correlations for stagnant thermal conductivity of liquid-saturated porous beds of spheres , 1989 .

[10]  C. Chan,et al.  Conductance of packed spheres in vacuum , 1973 .

[11]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[12]  Paul Zulli,et al.  Evaluation of effective thermal conductivity from the structure of a packed bed , 1999 .

[13]  G. Carotenuto,et al.  THE EFFECTIVE THERMAL CONDUCTIVITY OF PACKED BEDS OF SPHERES FOR A FINITE CONTACT AREA , 2000 .

[14]  A. Hunt,et al.  Mean Free Path and Apparent Thermal Conductivity of a Gas in a Porous Medium , 1995 .

[15]  W. Bussing,et al.  Thermal conductivity of unsaturated packed beds—comparison of experimental results and estimation methods , 1997 .

[16]  C. Thornton,et al.  Quasi–static deformation of particulate media , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[18]  M. M. Chen,et al.  A theoretical analysis of heat transfer due to particle impact , 1988 .

[19]  D. Kunii,et al.  Heat transfer characteristics of porous rocks , 1960 .

[20]  B. Chao,et al.  Thermal Contact Resistance in a Vacuum Environment , 1965 .

[21]  M. Okazaki Heat and Mass Transport Properties of Heterogeneous Materials , 1985 .

[22]  L. P. Filippov,et al.  Handbook of Thermal Conductivity of Liquids and Gases , 1993 .

[23]  G. Buonanno,et al.  The effective thermal conductivity of a porous medium with interconnected particles , 1997 .

[24]  S. H. Lee,et al.  SPHERE PACKING ALGORITHM FOR HEAT TRANSFER STUDIES , 2000 .

[25]  W. Rose Volumes and Surface Areas of Pendular Rings , 1958 .

[26]  James F. Shackelford,et al.  Introduction to materials science for engineers , 1985 .

[27]  R. Carbonell,et al.  Heat conduction in multiphase systems—II: Experimental method and results for three-phase systems , 1985 .

[28]  O. Molerus Heat transfer in moving beds with a stagnant interstitial gas , 1997 .

[29]  G. R. Hadley,et al.  Thermal conductivity of packed metal powders , 1986 .

[30]  Joseph J. McCarthy,et al.  Heat conduction in granular materials , 2001 .