The compressive response of open-cell foams
暂无分享,去创建一个
[1] W. E. Warren,et al. Linear Elastic Behavior of a Low-Density Kelvin Foam With Open Cells , 1997 .
[2] J. CLERK MAXWELL,et al. Statique expérimentale et théorique des Liquides soumis aux seules Forces moléculaires, , 1874, Nature.
[3] Stelios Kyriakides,et al. Propagating Instabilities in Structures , 1993 .
[4] Nicolas Triantafyllidis,et al. On the stability of Kelvin cell foams under compressive loads , 2005 .
[5] Stelios Kyriakides,et al. In-plane crushing of a polycarbonate honeycomb , 1998 .
[6] A. G. Dement'ev,et al. Model analysis of the cellular structure of plastic foams of the polyurethane type , 1970 .
[7] J. Rice. Localization of plastic deformation , 1976 .
[8] Nicolas Triantafyllidis,et al. Scale Effects in Media With Periodic and Nearly Periodic Microstructures, Part I: Macroscopic Properties , 1997 .
[9] M. C. Shaw,et al. The plastic behavior of cellular materials , 1966 .
[10] C. Scott,et al. Processing of porous ceramics , 1992 .
[11] Stelios Kyriakides,et al. Compressive response of open cell foams part II: Initiation and evolution of crushing , 2005 .
[12] A Cunningham,et al. Low density cellular plastics : physical basis of behaviour , 1994 .
[13] N. Triantafyllidis,et al. Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity , 1993 .
[14] Stelios Kyriakides,et al. In-plane biaxial crushing of honeycombs—: Part II: Analysis , 1999 .
[15] A. G. Dement'ev,et al. Effect of cellular structure on the mechanical properties of plastic foams , 1970 .
[16] O. Bayer. Das Di‐Isocyanat‐Polyadditionsverfahren (Polyurethane) , 1947 .
[17] S. D. Papka,et al. In-plane compressive response and crushing of honeycomb , 1994 .
[18] G. Menges,et al. Estimation of mechanical properties for rigid polyurethane foams , 1975 .
[19] M. Ashby,et al. The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[20] P. Gennes. The Physics Of Foams , 1999 .
[21] Brigitte Kriszt,et al. Handbook of cellular metals : production, processing, applications , 2002 .
[22] L. Gibson,et al. Anisotropy of foams , 1988 .
[23] M. Ashby,et al. Metal Foams: A Design Guide , 2000 .
[24] E. B. Matzke,et al. The three-dimensional shape of bubbles in foam; an analysis of the role of surface forces in three-dimensional cell shape determination. , 1946, American journal of botany.
[25] N. J. Mills,et al. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells , 1997 .
[26] S. D. Papka,et al. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb , 1998 .
[27] G. Gioia,et al. The Deformation Habits of Compressed Open-Cell Solid Foams , 2000 .
[28] William James Stronge,et al. Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs , 1988 .
[29] Hilary Bart-Smith,et al. Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam , 2000 .
[30] Shau‐Tarng Lee,et al. Polymeric Foams : Mechanisms and Materials , 2004 .
[31] W. Ko. Deformations of Foamed Elastomers , 1965 .
[32] L. Mullins. Softening of Rubber by Deformation , 1969 .
[33] C. Macosko,et al. Polyurethane flexible foam formation , 1994 .
[34] Lorna J. Gibson,et al. Failure of aluminum foams under multiaxial loads , 2000 .
[35] Michael F. Ashby,et al. Failure surfaces for cellular materials under multiaxial loads—I.Modelling , 1989 .
[36] Michael F. Ashby,et al. The mechanical properties of cellular solids , 1983 .
[37] Torsional rigidity of a plateau border , 1997 .
[38] L. Mullins. Effect of Stretching on the Properties of Rubber , 1948 .
[39] M. Ashby,et al. The mechanics of two-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[40] Andrew Michael Kraynik,et al. Foam Structure: From Soap Froth to Solid Foams , 2003 .
[41] M. Ashby,et al. Cellular solids: Structure & properties , 1988 .
[42] R. B. Turner,et al. The morphology of flexible polyurethane matrix polymers , 1994 .
[43] Stelios Kyriakides,et al. Compressive response of open-cell foams. Part I: Morphology and elastic properties , 2005 .
[44] M. Schraad,et al. ONSET OF FAILURE IN ALUMINUM HONEYCOMBS UNDER GENERAL IN-PLANE LOADING , 1998 .
[45] Nicolas Triantafyllidis,et al. Scale Effects in Media With Periodic and Nearly Periodic Microstructures, Part II: Failure Mechanisms , 1997 .
[46] Alan N. Gent,et al. Mechanics of Foamed Elastic Materials , 1963 .
[47] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .
[48] N. Fleck,et al. Isotropic constitutive models for metallic foams , 2000 .
[49] Stelios Kyriakides,et al. On the crushing stress of open cell foams , 2006 .
[50] R. Aseeva,et al. Handbook of polymeric foams and foam technology. , 2004 .
[51] Karam Sab,et al. Foam mechanics: nonlinear response of an elastic 3D-periodic microstructure , 2002 .