The compressive response of open-cell foams

[1]  W. E. Warren,et al.  Linear Elastic Behavior of a Low-Density Kelvin Foam With Open Cells , 1997 .

[2]  J. CLERK MAXWELL,et al.  Statique expérimentale et théorique des Liquides soumis aux seules Forces moléculaires, , 1874, Nature.

[3]  Stelios Kyriakides,et al.  Propagating Instabilities in Structures , 1993 .

[4]  Nicolas Triantafyllidis,et al.  On the stability of Kelvin cell foams under compressive loads , 2005 .

[5]  Stelios Kyriakides,et al.  In-plane crushing of a polycarbonate honeycomb , 1998 .

[6]  A. G. Dement'ev,et al.  Model analysis of the cellular structure of plastic foams of the polyurethane type , 1970 .

[7]  J. Rice Localization of plastic deformation , 1976 .

[8]  Nicolas Triantafyllidis,et al.  Scale Effects in Media With Periodic and Nearly Periodic Microstructures, Part I: Macroscopic Properties , 1997 .

[9]  M. C. Shaw,et al.  The plastic behavior of cellular materials , 1966 .

[10]  C. Scott,et al.  Processing of porous ceramics , 1992 .

[11]  Stelios Kyriakides,et al.  Compressive response of open cell foams part II: Initiation and evolution of crushing , 2005 .

[12]  A Cunningham,et al.  Low density cellular plastics : physical basis of behaviour , 1994 .

[13]  N. Triantafyllidis,et al.  Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity , 1993 .

[14]  Stelios Kyriakides,et al.  In-plane biaxial crushing of honeycombs—: Part II: Analysis , 1999 .

[15]  A. G. Dement'ev,et al.  Effect of cellular structure on the mechanical properties of plastic foams , 1970 .

[16]  O. Bayer Das Di‐Isocyanat‐Polyadditionsverfahren (Polyurethane) , 1947 .

[17]  S. D. Papka,et al.  In-plane compressive response and crushing of honeycomb , 1994 .

[18]  G. Menges,et al.  Estimation of mechanical properties for rigid polyurethane foams , 1975 .

[19]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  P. Gennes The Physics Of Foams , 1999 .

[21]  Brigitte Kriszt,et al.  Handbook of cellular metals : production, processing, applications , 2002 .

[22]  L. Gibson,et al.  Anisotropy of foams , 1988 .

[23]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[24]  E. B. Matzke,et al.  The three-dimensional shape of bubbles in foam; an analysis of the role of surface forces in three-dimensional cell shape determination. , 1946, American journal of botany.

[25]  N. J. Mills,et al.  Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells , 1997 .

[26]  S. D. Papka,et al.  Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb , 1998 .

[27]  G. Gioia,et al.  The Deformation Habits of Compressed Open-Cell Solid Foams , 2000 .

[28]  William James Stronge,et al.  Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs , 1988 .

[29]  Hilary Bart-Smith,et al.  Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam , 2000 .

[30]  Shau‐Tarng Lee,et al.  Polymeric Foams : Mechanisms and Materials , 2004 .

[31]  W. Ko Deformations of Foamed Elastomers , 1965 .

[32]  L. Mullins Softening of Rubber by Deformation , 1969 .

[33]  C. Macosko,et al.  Polyurethane flexible foam formation , 1994 .

[34]  Lorna J. Gibson,et al.  Failure of aluminum foams under multiaxial loads , 2000 .

[35]  Michael F. Ashby,et al.  Failure surfaces for cellular materials under multiaxial loads—I.Modelling , 1989 .

[36]  Michael F. Ashby,et al.  The mechanical properties of cellular solids , 1983 .

[37]  Torsional rigidity of a plateau border , 1997 .

[38]  L. Mullins Effect of Stretching on the Properties of Rubber , 1948 .

[39]  M. Ashby,et al.  The mechanics of two-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  Andrew Michael Kraynik,et al.  Foam Structure: From Soap Froth to Solid Foams , 2003 .

[41]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[42]  R. B. Turner,et al.  The morphology of flexible polyurethane matrix polymers , 1994 .

[43]  Stelios Kyriakides,et al.  Compressive response of open-cell foams. Part I: Morphology and elastic properties , 2005 .

[44]  M. Schraad,et al.  ONSET OF FAILURE IN ALUMINUM HONEYCOMBS UNDER GENERAL IN-PLANE LOADING , 1998 .

[45]  Nicolas Triantafyllidis,et al.  Scale Effects in Media With Periodic and Nearly Periodic Microstructures, Part II: Failure Mechanisms , 1997 .

[46]  Alan N. Gent,et al.  Mechanics of Foamed Elastic Materials , 1963 .

[47]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[48]  N. Fleck,et al.  Isotropic constitutive models for metallic foams , 2000 .

[49]  Stelios Kyriakides,et al.  On the crushing stress of open cell foams , 2006 .

[50]  R. Aseeva,et al.  Handbook of polymeric foams and foam technology. , 2004 .

[51]  Karam Sab,et al.  Foam mechanics: nonlinear response of an elastic 3D-periodic microstructure , 2002 .