Bounds on the Error Probability of Block Codes over the q-Ary Erasure Channel

In this paper, tight bounds on the block error probability of linear block codes over order-q finite fields for the q-ary erasure channel, under maximum-likelihood (ML) decoding, are developed. Upper bounds are obtained for uniform parity-check ensembles, sparse parity-check ensembles, general parity-check ensembles (e.g., Gallager regular nonbinary low-density parity-check ensembles), and for any given linear code with known distance spectrum. The tightness of the upper bounds is confirmed both by the comparison with simple lower bounds and, for Gallager low-density parity-check ensembles, by extensive Monte Carlo simulations. Exploiting the derived bounds, it is shown how already for short blocks and small q>2 sparse ensembles attain block error probabilities close to those of idealized maximum distance separable (MDS) codes, down to low error probabilities, whereas in the same regime binary codes show visible losses with respect to the Singleton bound. Thanks to the accurate performance estimates, the developed bounds can support the design of near-optimum erasure correcting codes with short and moderate lengths.

[1]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[2]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[3]  Muriel Médard,et al.  On coding for reliable communication over packet networks , 2005, Phys. Commun..

[4]  Vincent Roca,et al.  Low Density Parity Check (LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes , 2008, RFC.

[5]  Marco Chiani,et al.  Maximum Likelihood Erasure Decoding of LDPC Codes: Pivoting Algorithms and Code Design , 2012, IEEE Transactions on Communications.

[6]  Marco Chiani,et al.  Generalized IRA Erasure Correcting Codes for Hybrid Iterative/Maximum Likelihood Decoding , 2008, IEEE Communications Letters.

[7]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[8]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[9]  Rudolf Lide,et al.  Finite fields , 1983 .

[10]  Robert J. McEliece,et al.  Practical codes for photon communication , 1981, IEEE Trans. Inf. Theory.

[11]  Balázs Matuz,et al.  Short Erasure Correcting LDPC IRA Codes over GF(q) , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[12]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[13]  S. Dolinar,et al.  Protograph LDPC Codes over Burst Erasure Channels , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[14]  Peter Vary,et al.  The Performance of Short Random Linear Fountain Codes under Maximum Likelihood Decoding , 2011, 2011 IEEE International Conference on Communications (ICC).

[15]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[16]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[17]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[18]  Valentin Savin,et al.  Analysis of Quasi-Cyclic LDPC codes under ML decoding over the erasure channel , 2010, 2010 International Symposium On Information Theory & Its Applications.

[19]  Marco Chiani,et al.  Performance versus overhead for fountain codes over Fq , 2010, IEEE Communications Letters.

[20]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[21]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[22]  Shlomo Shamai,et al.  Performance Bounds for Nonbinary Linear Block Codes Over Memoryless Symmetric Channels , 2009, IEEE Transactions on Information Theory.

[23]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[24]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[25]  Faramarz Fekri,et al.  Results on the Improved Decoding Algorithm for Low-Density Parity-Check Codes Over the Binary Erasure Channel , 2007, IEEE Transactions on Information Theory.

[26]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[27]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[28]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[29]  Stephen G. Wilson,et al.  Digital Modulation and Coding , 1995 .

[30]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[31]  Amir K. Khandani,et al.  Coding over an erasure channel with a large alphabet size , 2008, 2008 IEEE International Symposium on Information Theory.

[32]  Peter Vary,et al.  The performance of low-density random linear fountain codes over higher order galois fields under maximum likelihood decoding , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[33]  Milica Stojanovic,et al.  Random Linear Network Coding for Time-Division Duplexing: Field Size Considerations , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[34]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.

[35]  A. Guillen,et al.  Coding in the Block-Erasure Channel , 2006, IEEE Transactions on Information Theory.

[36]  Jörg Kliewer,et al.  On the optimal block length for joint channel and network coding , 2011, 2011 IEEE Information Theory Workshop.

[37]  R. Gallager Information Theory and Reliable Communication , 1968 .

[38]  G. Landsberg Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe. , 2022 .

[39]  Oliver M. Collins,et al.  A Comparison of Known Codes, Random Codes, and the Best Codes , 1998, IEEE Trans. Inf. Theory.

[40]  Faramarz Fekri,et al.  On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[41]  Michael Mitzenmacher,et al.  A digital fountain approach to asynchronous reliable multicast , 2002, IEEE J. Sel. Areas Commun..