Selective Chemical Labeling of Proteins with Small Fluorescent Molecules Based on Metal-Chelation Methodology

Site-specific chemical labeling utilizing small fluorescent molecules is a powerful and attractive technique for in vivo and in vitro analysis of cellular proteins, which can circumvent some problems in genetic encoding labeling by large fluorescent proteins. In particular, affinity labeling based on metal-chelation, advantageous due to the high selectivity/simplicity and the small tag-size, is promising, as well as enzymatic covalent labeling, thereby a variety of novel methods have been studied in recent years. This review describes the advances in chemical labeling of proteins, especially highlighting the metal-chelation methodology.

[1]  H. Vogel,et al.  Reversible site-selective labeling of membrane proteins in live cells , 2004, Nature Biotechnology.

[2]  R. N. Trelease,et al.  Overexpression and Mislocalization of a Tail‐Anchored GFP Redefines the Identity of Peroxisomal ER , 2003, Traffic.

[3]  中西 淳 Imaging of conformational changes of proteins with a new environment-sensitive fluorescent probe designed for site-specific labeling of recombinant proteins in live cells , 2001 .

[4]  Ingemar Lundström,et al.  Piezo dispensed microarray of multivalent chelating thiols for dissecting complex protein-protein interactions. , 2006, Analytical chemistry.

[5]  A. Ting,et al.  Site-specific labeling of proteins with small molecules in live cells. , 2005, Current opinion in biotechnology.

[6]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[7]  Terrence J Sejnowski,et al.  Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. , 2007, Nature chemical biology.

[8]  S. Jakobs,et al.  Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. , 2004, Molecular biology of the cell.

[9]  A. Ojida,et al.  Ratiometric fluorescence detection of a tag fused protein using the dual-emission artificial molecular probe. , 2006, Chemical communications.

[10]  Brent R. Martin,et al.  Mammalian cell–based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity , 2005, Nature Biotechnology.

[11]  H. Nonaka,et al.  Non-enzymatic covalent protein labeling using a reactive tag. , 2007, Journal of the American Chemical Society.

[12]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[13]  H. Vogel,et al.  Labeling of fusion proteins with synthetic fluorophores in live cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Sheetz,et al.  Methotrexate conjugates: a molecular in vivo protein tag. , 2004, Angewandte Chemie.

[15]  A. Ting,et al.  Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. , 2006, Journal of the American Chemical Society.

[16]  Baowei Chen,et al.  A red cy3-based biarsenical fluorescent probe targeted to a complementary binding peptide. , 2007, Journal of the American Chemical Society.

[17]  Catherine Proenza,et al.  The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins , 2001, Pflügers Archiv.

[18]  R. Tsien,et al.  Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy , 2006, Proceedings of the National Academy of Sciences.

[19]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[20]  Garry P Nolan,et al.  Chemical labeling strategies for cell biology , 2006, Nature Methods.

[21]  R. Tsien,et al.  A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure , 2007, Proceedings of the National Academy of Sciences.

[22]  Lei Wang,et al.  Expanding the Genetic Code , 2003, Science.

[23]  Karen N. Allen,et al.  Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. , 2007, Journal of the American Chemical Society.

[24]  M. Distefano,et al.  Selective Labeling of Proteins by Using Protein Farnesyltransferase , 2007, Chembiochem : a European journal of chemical biology.

[25]  L. Gierasch,et al.  Site‐specific Fluorescent Labeling of Poly‐histidine Sequences Using a Metal‐chelating Cysteine , 2007, Chemical biology & drug design.

[26]  T. Imato,et al.  A fluorescent photochromic compound for labeling biomolecules. , 2007, Chemical communications.

[27]  N. Johnsson,et al.  Specific labeling of cell surface proteins with chemically diverse compounds. , 2004, Journal of the American Chemical Society.

[28]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[29]  Bo Liedberg,et al.  Differential Protein Assembly on Micropatterned Surfaces with Tailored Molecular and Surface Multivalency , 2006, Chembiochem : a European journal of chemical biology.

[30]  Baowei Chen,et al.  Identification of an orthogonal peptide binding motif for biarsenical multiuse affinity probes. , 2007, Bioconjugate chemistry.

[31]  B. Imperiali,et al.  A Powerful Combinatorial Screen to Identify High‐Affinity Terbium(III)‐Binding Peptides , 2003, Chembiochem : a European journal of chemical biology.

[32]  M. Sheetz,et al.  In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag , 2005, Nature Methods.

[33]  Kurt W. Marek,et al.  Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo , 2003, Nature.

[34]  Y. Umezawa,et al.  Imaging of conformational changes of proteins with a new environment-sensitive fluorescent probe designed for site-specific labeling of recombinant proteins in live cells. , 2001, Analytical chemistry.

[35]  A. Ojida,et al.  Pyrene Excimer‐Based Dual‐Emission Detection of a Oligoaspartate Tag‐Fused Protein by Using a ZnII–DpaTyr Probe , 2007, Chembiochem : a European journal of chemical biology.

[36]  J. Rao,et al.  Chemical Labeling of Protein in Living Cells , 2007, Chembiochem : a European journal of chemical biology.

[37]  S. Miller,et al.  Labeling Tetracysteine‐Tagged Proteins with a SplAsH of Color: A Modular Approach to Bis‐Arsenical Fluorophores , 2007, Chembiochem : a European journal of chemical biology.

[38]  N. Allbritton,et al.  Targeted protein functionalization using His-tags. , 2004, Bioconjugate chemistry.

[39]  B. Imperiali,et al.  Lanthanide‐Binding Tags as Versatile Protein Coexpression Probes , 2003, Chembiochem : a European journal of chemical biology.

[40]  Y. Mori,et al.  Oligo-Asp tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins. , 2006, Journal of the American Chemical Society.

[41]  B. Imperiali,et al.  Lanthanide-binding tags as luminescent probes for studying protein interactions. , 2006, Journal of the American Chemical Society.

[42]  S. Lata,et al.  Monitoring the dynamics of ligand-receptor complexes on model membranes. , 2006, Journal of the American Chemical Society.

[43]  Karen N. Allen,et al.  Structural origin of the high affinity of a chemically evolved lanthanide-binding peptide. , 2004, Angewandte Chemie.

[44]  Langdon J. Martin,et al.  Rapid combinatorial screening of peptide libraries for the selection of lanthanide-binding tags (LBTs) , 2005 .

[45]  Robert E Campbell,et al.  New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. , 2002, Journal of the American Chemical Society.

[46]  R. Tsien,et al.  Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors , 2004, Nature Neuroscience.

[47]  Harald Schwalbe,et al.  Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. , 2003, Journal of the American Chemical Society.

[48]  G. Nolan,et al.  A general approach for chemical labeling and rapid, spatially controlled protein inactivation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[50]  Mark H Ellisman,et al.  A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells , 2005, Nature Methods.

[51]  S. Lata,et al.  High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. , 2005, Chemistry.

[52]  T. Imato,et al.  Methodology of reversible protein labeling for ratiometric fluorescent measurement. , 2006, Molecular bioSystems.

[53]  S. Lata,et al.  High-affinity adaptors for switchable recognition of histidine-tagged proteins. , 2005, Journal of the American Chemical Society.

[54]  C. Hogue,et al.  Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. , 1990, The Journal of biological chemistry.

[55]  Carolyn R Bertozzi,et al.  Introducing genetically encoded aldehydes into proteins. , 2007, Nature chemical biology.

[56]  T. Squier,et al.  Prospecting the Proteome: Identification of Naturally Occurring Binding Motifs for Biarsenical Probes , 2007, Chembiochem : a European journal of chemical biology.

[57]  Baowei Chen,et al.  CrAsH: a biarsenical multi-use affinity probe with low non-specific fluorescence. , 2006, Chemical communications.

[58]  S. Lippard,et al.  Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein-nitrilotriacetic acid conjugate. , 2006, Journal of the American Chemical Society.

[59]  Virginia W Cornish,et al.  Selective chemical labeling of proteins in living cells. , 2005, Current opinion in chemical biology.

[60]  R. Ebright,et al.  Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. , 2001, Journal of the American Chemical Society.

[61]  Elizabeth A Jares-Erijman,et al.  Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins. , 2006, Journal of the American Chemical Society.

[62]  Karen N. Allen,et al.  Double-lanthanide-binding tags for macromolecular crystallographic structure determination. , 2007, Journal of the American Chemical Society.

[63]  Kai Johnsson,et al.  Chemical probes shed light on protein function. , 2007, Current opinion in structural biology.

[64]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[65]  Thomas J Deerinck,et al.  Multicolor and Electron Microscopic Imaging of Connexin Trafficking , 2002, Science.