Photovoltaic characterization of dye‐sensitized solar cells: effect of device masking on conversion efficiency

Reference LPI-ARTICLE-2006-037doi:10.1002/pip.683View record in Web of Science Record created on 2006-11-09, modified on 2017-05-12

[1]  Naoki Koide,et al.  Measuring methods of cell performance of dye-sensitized solar cells , 2004 .

[2]  Yasuhiko Takeda,et al.  Outdoor performance of large scale DSC modules , 2004 .

[3]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[4]  Nerine J. Cherepy,et al.  Ultrafast Studies of Photoexcited Electron Dynamics in γ- and α-Fe2O3 Semiconductor Nanoparticles , 1998 .

[5]  Greg P. Smestad,et al.  Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies , 1994 .

[6]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[7]  P. M. Sommeling,et al.  Reproducible manufacturing of dye‐sensitized solar cells on a semi‐automated baseline , 2003 .

[8]  J. Kroon,et al.  Spectral response and IV-characterization of dye-sensitized nanocrystalline TiO 2 solar cells , 2000 .

[9]  Brian A. Gregg,et al.  Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces , 2001 .

[10]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[11]  Takayuki Kitamura,et al.  Calibration of solar simulator for evaluation of dye-sensitized solar cells , 2004 .

[12]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[13]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[14]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[15]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[16]  G. Tulloch,et al.  Light and energy—dye solar cells for the 21st century , 2004 .

[17]  Yang Huang,et al.  Dye-sensitized solar cells, from cell to module , 2004 .

[18]  Michael Grätzel,et al.  Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals , 2003 .

[19]  Hiroshi Matsui,et al.  100 mm × 100 mm large-sized dye sensitized solar cells , 2004 .

[20]  Hidetoshi Miura,et al.  High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. , 2004, Journal of the American Chemical Society.

[21]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[22]  T. Kawashima,et al.  Application of an ionic liquid-based electrolyte to a mm sized dye-sensitized solar cell , 2004 .

[23]  J. Ferber,et al.  An electrical model of the dye-sensitized solar cell , 1998 .

[24]  C. Riordan,et al.  Spectral solar irradiance data sets for selected terrestrial conditions , 1985 .

[25]  R. Sakaguchi,et al.  Measurement and Analysis of the Series Resistance in a Dye-Sensitized Solar Cell , 2005 .