Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits

AbstractWe introduce simple qubit-encodings and logic gates which eliminate the need for certain difficult single-qubit operations in superconducting phase-qubits, while preserving universality. The simplest encoding uses two physical qubits per logical qubit. Two architectures for its implementation are proposed: one employing N physical qubits out of which N/2 are ancillas fixed in the |1 state, the other employing N/2+1 physical qubits, one of which is a bus qubit connected to all others. Details of a minimal set of universal encoded logic operations are given, together with recoupling schemes, that require nanosecond pulses. A generalization to codes with higher ratio of number of logical qubits per physical qubits is presented. Compatible decoherence and noise suppression strategies are also discussed. PACS: 03.67.Lx; 85.25.Hv; 03.67.-a; 89.70.+c

[1]  D A Lidar,et al.  Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.

[2]  D. W. Leung Two-qubit Projective Measurements are Universal for Quantum Computation , 2001 .

[3]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[4]  Lorenza Viola,et al.  Implementation of universal control on a decoherence-free qubit , 2002 .

[5]  A. M. Zagoskin,et al.  Multi-terminal superconducting phase qubit , 2002 .

[6]  Minoru Toda,et al.  Springer Series in Solid-State Sciences , 1989 .

[7]  D A Lidar,et al.  Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.

[8]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[9]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[10]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[11]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[12]  Alexandre M. Zagoskin A scalable, tunable qubit, based on a clean DND or grain boundary D-D junction , 1999 .

[13]  Lluis Masanes,et al.  Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries , 2002, Quantum information & computation.

[14]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[15]  Michael A. Nielsen,et al.  Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state , 2001 .

[16]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[17]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.

[18]  K. B. Whaley,et al.  Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.

[19]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[20]  U. Haeberlen,et al.  Approach to High-Resolution nmr in Solids , 1968 .

[21]  D. Vitali,et al.  Heating and decoherence suppression using decoupling techniques , 2001, quant-ph/0108007.

[22]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[23]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[24]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .

[25]  Simon C. Benjamin Simple pulses for universal quantum computation with a Heisenberg ABAB chain , 2001 .

[26]  40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New York, NY, USA , 1999, FOCS.

[27]  Lorenza Viola Quantum control via encoded dynamical decoupling , 2002 .

[28]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[29]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[31]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[32]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[33]  Daniel A. Lidar,et al.  Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..

[34]  G. Guo,et al.  Suppressing environmental noise in quantum computation through pulse control , 1999 .

[35]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[36]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[37]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[38]  Daniel A. Lidar,et al.  Qubits as Parafermions , 2001, OFC 2001.

[39]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[40]  M. E. Rose Elementary Theory of Angular Momentum , 1957 .

[41]  Debbie W. Leung,et al.  Efficient implementation of selective recoupling in heteronuclear spin systems using hadamard matrices , 2000 .

[42]  Daniel A Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.

[43]  E Knill,et al.  Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.

[44]  D. A. Lidar,et al.  Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .

[45]  Alexandre Blais,et al.  Operation of universal gates in a solid state quantum computer based on clean Josephson junctions between d-wave superconductors , 2000 .

[46]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[47]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[48]  David P. DiVincenzo,et al.  Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..

[49]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[50]  K. B. Whaley,et al.  Encoded universality for generalized anisotropic exchange Hamiltonians , 2002, quant-ph/0204016.

[51]  Vladimir Protopopescu,et al.  Robust control of decoherence in realistic quantum gates , 2002 .