Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits
暂无分享,去创建一个
[1] D A Lidar,et al. Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.
[2] D. W. Leung. Two-qubit Projective Measurements are Universal for Quantum Computation , 2001 .
[3] E. Knill,et al. Resilient Quantum Computation , 1998 .
[4] Lorenza Viola,et al. Implementation of universal control on a decoherence-free qubit , 2002 .
[5] A. M. Zagoskin,et al. Multi-terminal superconducting phase qubit , 2002 .
[6] Minoru Toda,et al. Springer Series in Solid-State Sciences , 1989 .
[7] D A Lidar,et al. Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.
[8] Vijay Patel,et al. Quantum superposition of distinct macroscopic states , 2000, Nature.
[9] D. Vitali,et al. Using parity kicks for decoherence control , 1998, quant-ph/9808055.
[10] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[11] Seth Lloyd,et al. Universal Control of Decoupled Quantum Systems , 1999 .
[12] Alexandre M. Zagoskin. A scalable, tunable qubit, based on a clean DND or grain boundary D-D junction , 1999 .
[13] Lluis Masanes,et al. Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries , 2002, Quantum information & computation.
[14] Kempe,et al. Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.
[15] Michael A. Nielsen,et al. Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state , 2001 .
[16] Orlando,et al. Josephson Persistent-Current Qubit , 2022 .
[17] J. Levy. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.
[18] K. B. Whaley,et al. Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.
[19] Hoi-Kwong Lo,et al. Introduction to Quantum Computation Information , 2002 .
[20] U. Haeberlen,et al. Approach to High-Resolution nmr in Solids , 1968 .
[21] D. Vitali,et al. Heating and decoherence suppression using decoupling techniques , 2001, quant-ph/0108007.
[22] S. Lloyd,et al. DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.
[23] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[24] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .
[25] Simon C. Benjamin. Simple pulses for universal quantum computation with a Heisenberg ABAB chain , 2001 .
[26] 40th Annual Symposium on Foundations of Computer Science, FOCS '99, 17-18 October, 1999, New York, NY, USA , 1999, FOCS.
[27] Lorenza Viola. Quantum control via encoded dynamical decoupling , 2002 .
[28] E. Knill,et al. DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.
[29] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[30] Seth Lloyd,et al. Superconducting persistent-current qubit , 1999, cond-mat/9908283.
[31] D. Longmore. The principles of magnetic resonance. , 1989, British medical bulletin.
[32] Dorit Aharonov,et al. Fault-tolerant quantum computation with constant error , 1997, STOC '97.
[33] Daniel A. Lidar,et al. Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..
[34] G. Guo,et al. Suppressing environmental noise in quantum computation through pulse control , 1999 .
[35] Lloyd,et al. Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.
[36] F K Wilhelm,et al. Quantum superposition of macroscopic persistent-current states. , 2000, Science.
[37] Y. Makhlin,et al. Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.
[38] Daniel A. Lidar,et al. Qubits as Parafermions , 2001, OFC 2001.
[39] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[40] M. E. Rose. Elementary Theory of Angular Momentum , 1957 .
[41] Debbie W. Leung,et al. Efficient implementation of selective recoupling in heteronuclear spin systems using hadamard matrices , 2000 .
[42] Daniel A Lidar,et al. Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.
[43] E Knill,et al. Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.
[44] D. A. Lidar,et al. Power of anisotropic exchange interactions: Universality and efficient codes for quantum computing , 2002 .
[45] Alexandre Blais,et al. Operation of universal gates in a solid state quantum computer based on clean Josephson junctions between d-wave superconductors , 2000 .
[46] Michael A. Nielsen,et al. Quantum computation by measurement and quantum memory , 2003 .
[47] K. B. Whaley,et al. Universal quantum computation with the exchange interaction , 2000, Nature.
[48] David P. DiVincenzo,et al. Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..
[49] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[50] K. B. Whaley,et al. Encoded universality for generalized anisotropic exchange Hamiltonians , 2002, quant-ph/0204016.
[51] Vladimir Protopopescu,et al. Robust control of decoherence in realistic quantum gates , 2002 .