A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: possibilities and limits.

[1]  P. Ladevèze,et al.  On structural computations until fracture based on an anisotropic and unilateral damage theory , 2014 .

[2]  Eduardo Saiz,et al.  Sol–gel method to fabricate CaP scaffolds by robocasting for tissue engineering , 2012, Journal of Materials Science: Materials in Medicine.

[3]  P. Ladevèze,et al.  Computational prediction of the lifetime of self-healing CMC structures , 2012 .

[4]  Eduardo Saiz,et al.  Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. , 2011, Materials science & engineering. C, Materials for biological applications.

[5]  Xiaoxing Liu,et al.  Strength of Highly Porous Ceramic Electrodes , 2011 .

[6]  P. Ladevèze,et al.  A new approach to the subcritical cracking of ceramic fibers , 2010 .

[7]  Adnan Ibrahimbegovic,et al.  Failure of heterogeneous materials: 3D meso‐scale FE models with embedded discontinuities , 2010 .

[8]  Amy J Wagoner Johnson,et al.  Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. , 2010, Biomaterials.

[9]  S. Yang,et al.  Mechanical strength of extrusion freeformed calcium phosphate filaments , 2010, Journal of materials science. Materials in medicine.

[10]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[11]  P. Ladevèze,et al.  Mechanical behaviour and lifetime modelling of self-healing ceramic-matrix composites subjected to thermomechanical loading in air , 2009 .

[12]  Jacques Lamon,et al.  Delayed Failure of Hi‐Nicalon and Hi‐Nicalon S Multifilament Tows and Single Filaments at Intermediate Temperatures (500°–800°C) , 2009 .

[13]  L. McIntosh,et al.  Impact of bone geometry on effective properties of bone scaffolds. , 2009, Acta biomaterialia.

[14]  Fernando Guiberteau,et al.  Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. , 2008, Acta biomaterialia.

[15]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[16]  Martin Berggren,et al.  Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.

[17]  Eduardo Saiz,et al.  Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. , 2008, Journal of biomedical materials research. Part A.

[18]  Eduardo Saiz,et al.  Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting. , 2007, Journal of biomedical materials research. Part A.

[19]  J. Russias,et al.  Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. , 2007, Journal of biomedical materials research. Part A.

[20]  Eduardo Saiz,et al.  Preparation of porous hydroxyapatite scaffolds , 2007 .

[21]  R. Desmorat Positivité de la dissipation intrinsèque d'une classe de modèles d'endommagement anisotropes non standards , 2006 .

[22]  I. Sevostianov,et al.  Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature , 2006 .

[23]  Shanhui Fan,et al.  Direct‐Write Assembly of Three‐Dimensional Photonic Crystals: Conversion of Polymer Scaffolds to Silicon Hollow‐Woodpile Structures , 2006 .

[24]  Eduardo Saiz,et al.  Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. , 2005, Acta biomaterialia.

[25]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[26]  K. Leong,et al.  Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. , 2003, Biomaterials.

[27]  Joseph Cesarano,et al.  Colloidal inks for directed assembly of 3-D periodic structures , 2002 .

[28]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[29]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[30]  Jacques Lamon,et al.  Statistical Approaches to Failure for Ceramic Reliability Assessment , 1988 .

[31]  Anthony G. Evans,et al.  A General Approach for the Statistical Analysis of Multiaxial Fracture , 1978 .

[32]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[33]  E. Sanchez-Palencia,et al.  Comportements local et macroscopique d'un type de milieux physiques heterogenes , 1974 .

[34]  R. Davidge,et al.  Strength-probability-time (SPT) relationships in ceramics , 1973 .

[35]  E. Saiz,et al.  Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. , 2010, Acta biomaterialia.

[36]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[37]  Amy J Wagoner Johnson,et al.  The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. , 2007, Biomaterials.

[38]  G. Allaire,et al.  A level-set method for shape optimization , 2002 .

[39]  D. Marquis,et al.  A statistical approach to the rupture of brittle materials , 1992 .

[40]  S. U. Ejezie Reliability assessment of cyclic load pore pressure response models for cohesive soil , 1988 .

[41]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[42]  W. Weibull A statistical theory of the strength of materials , 1939 .