StructVIO: Visual-Inertial Odometry With Structural Regularity of Man-Made Environments

In this paper, we propose a novel visual-inertial odometry (VIO) approach that adopts structural regularity in man-made environments. Instead of using Manhattan world assumption, we use Atlanta world model to describe such regularity. An Atlanta world is a world that contains multiple local Manhattan worlds with different heading directions. Each local Manhattan world is detected on the fly, and their headings are gradually refined by the state estimator when new observations are received. With full exploration of structural lines that aligned with each local Manhattan worlds, our VIO method becomes more accurate and robust, as well as more flexible to different kinds of complex man-made environments. Through benchmark tests and real-world tests, the results show that the proposed approach outperforms existing visual-inertial systems in large-scale man-made environments.

[1]  Changjoo Nam,et al.  VPass: Algorithmic compass using vanishing points in indoor environments , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[3]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[4]  Reinhard Koch,et al.  Structure and motion from line correspondences: Representation, projection, initialization and sparse bundle adjustment , 2014, J. Vis. Commun. Image Represent..

[5]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[6]  Francesc Moreno-Noguer,et al.  PL-SLAM: Real-time monocular visual SLAM with points and lines , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[7]  José M. Cañas,et al.  LineSLAM: Visual Real Time Localization Using Lines and UKF , 2013, ROBOT.

[8]  Dimitrios G. Kottas,et al.  Exploiting Urban Scenes for Vision-aided Inertial Navigation , 2013, Robotics: Science and Systems.

[9]  Javier González,et al.  Robust stereo visual odometry through a probabilistic combination of points and line segments , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Danping Zou,et al.  StructSLAM: Visual SLAM With Building Structure Lines , 2015, IEEE Transactions on Vehicular Technology.

[11]  Anastasios I. Mourikis,et al.  Optimization-Based Estimator Design for Vision-Aided Inertial Navigation , 2012, Robotics: Science and Systems.

[12]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[13]  Michael Gassner,et al.  SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems , 2017, IEEE Transactions on Robotics.

[14]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[15]  Alan L. Yuille,et al.  Manhattan World: compass direction from a single image by Bayesian inference , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Ian D. Reid,et al.  Real-Time Monocular SLAM with Straight Lines , 2006, BMVC.

[17]  Marc Pollefeys,et al.  Using vanishing points to improve visual-inertial odometry , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Anastasios I. Mourikis,et al.  Vision-aided inertial navigation for resource-constrained systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Rafael Grompone von Gioi,et al.  LSD: A Fast Line Segment Detector with a False Detection Control , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Joan Solà,et al.  Quaternion kinematics for the error-state Kalman filter , 2015, ArXiv.

[23]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[24]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[25]  Richard Szeliski,et al.  Manhattan-world stereo , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Olivier D. Faugeras,et al.  Automatic calibration and removal of distortion from scenes of structured environments , 1995, Optics & Photonics.

[27]  Teresa A. Vidal-Calleja,et al.  Impact of Landmark Parametrization on Monocular EKF-SLAM with Points and Lines , 2011, International Journal of Computer Vision.

[28]  Alexei A. Efros,et al.  Blocks World Revisited: Image Understanding Using Qualitative Geometry and Mechanics , 2010, ECCV.

[29]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[30]  Andrea Fusiello,et al.  Robust Multiple Structures Estimation with J-Linkage , 2008, ECCV.

[31]  Danping Zou,et al.  CoSLAM: Collaborative Visual SLAM in Dynamic Environments , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Gérard Lachapelle,et al.  Mitigation of attitude and gyro errors through vision aiding , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[34]  Daniel Cremers,et al.  Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Teresa A. Vidal-Calleja,et al.  Undelayed initialization of line segments in monocular SLAM , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Ji Zhao,et al.  PL-VIO: Tightly-Coupled Monocular Visual–Inertial Odometry Using Point and Line Features , 2018, Sensors.

[37]  Il Hong Suh,et al.  Loop closure through vanishing points in a line-based monocular SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[38]  Frank Dellaert,et al.  Atlanta world: an expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..