The truncated complex -moment problem

Let γ ≡ γ(2n) denote a sequence of complex numbers γ00, γ01, γ10, . . . , γ0,2n, . . . , γ2n,0 (γ00 > 0, γij = γji), and let K denote a closed subset of the complex plane C. The Truncated Complex K-Moment Problem for γ entails determining whether there exists a positive Borel measure μ on C such that γij = ∫ zizj dμ (0 ≤ i + j ≤ 2n) and suppμ ⊆ K. For K ≡ KP a semi-algebraic set determined by a collection of complex polynomials P = {pi (z, z)}mi=1, we characterize the existence of a finitely atomic representing measure with the fewest possible atoms in terms of positivity and extension properties of the moment matrix M (n) (γ) and the localizing matrices Mpi . We prove that there exists a rankM (n)-atomic representing measure for γ(2n) supported in KP if and only if M (n) ≥ 0 and there is some rankpreserving extension M (n+ 1) for which Mpi (n+ ki) ≥ 0, where deg pi = 2ki or 2ki − 1 (1 ≤ i ≤ m).

[1]  E. Haviland,et al.  On the Momentum Problem for Distribution Functions in More Than One Dimension. II , 1935 .

[2]  J. Shohat,et al.  The problem of moments , 1943 .

[3]  A. Atzmon A moment problem for positive measures on the unit disc. , 1975 .

[4]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[5]  J. Friedrich Operator Moment Problems , 1991 .

[6]  K. Schmüdgen TheK-moment problem for compact semi-algebraic sets , 1991 .

[7]  Moment functions on real algebraic sets , 1992 .

[8]  R. Curto,et al.  Recursively generated weighted shifts and the subnormal completion problem, II , 1993 .

[9]  V. Totik APPROXIMATION BY BERNSTEIN POLYNOMIALS , 1994 .

[10]  Algebraic operators and moments on algebraic sets. , 1994 .

[11]  B. Reznick Uniform denominators in Hilbert's seventeenth problem , 1995 .

[12]  M. Putinar Linear analysis of quadrature domains , 1995 .

[13]  M. Putinar,et al.  Problème des moments sur les compacts semi-algébriques , 1996 .

[14]  Mihai Putinar,et al.  Extremal solutions of the two-dimensional L-problem of moments , 1996 .

[15]  Raúl E. Curto,et al.  Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .

[16]  R. Curto,et al.  Flat Extensions of Positive Moment Matrices: Recursively Generated Relations , 1998 .

[17]  F. H. Szafraniec,et al.  The complex moment problem and subnormality : a polar decomposition approach , 1998 .

[18]  R. Curto,et al.  Flat Extensions of Positive Moment Matrices: Relations in Analytic or Conjugate Terms , 1998 .

[19]  Moment Problems for Multi-sequences of Operators , 1998 .

[20]  Mihai Putinar,et al.  Solving moment problems by dimensional extension , 1999, math/9905215.

[21]  MINIMAL REPRESENTING MEASURES ARISING FROM RANK-INCREASING MOMENT MATRIX EXTENSIONS , 1999 .

[22]  R. Curto,et al.  The quadratic moment problem for the unit circle and unit disk , 2000 .

[23]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .