Planck intermediate results - X. Physics of the hot gas in the Coma cluster

We present an analysis of Planck satellite data on the Coma cluster observed via the Sunyaev-Zeldovich effect. Thanks to its great sensitivity, Planck is able, for the first time, to detect SZ emission up to r ≈ 3 × R500. We test previously proposed spherically symmetric models for the pressure distribution in clusters against the azimuthally averaged data. In particular, we find that the Arnaud et al. (2010, AA by r = 2 × R500 it underestimates the observed y profile by a factor of ≃2. This may indicate that at these larger radii either: i) the cluster SZ emission is contaminated by unresolved SZ sources along the line of sight; or ii) the pressure profile of Coma is higher at r > R500 than the mean pressure profile predicted by the simulations used to constrain the models. The Planck image shows significant local steepening of the y profile in two regions about half a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and indeed the western feature was previously noticed in the ROSAT PSPC mosaic as well as in the radio. Using Plancky profiles extracted from corresponding sectors we find pressure jumps of 4.9-0.2+0.4 and 5.0-0.1+1.3 in the west and south-east, respectively. Assuming Rankine-Hugoniot pressure jump conditions, we deduce that the shock waves should propagate with Mach number Mw = 2.03-0.04+0.09 and Mse = 2.05-0.02+0.25 in the west and south-east, respectively. Finally, we find that the y and radio-synchrotron signals are quasi-linearly correlated on Mpc scales, with small intrinsic scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields fall off much more slowly with radius than previously thought.

R. B. Barreiro | J. Tuovinen | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | J. Bartlett | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | M. Frailis | A. Zacchei | A. Melchiorri | R. G'enova-Santos | J. Rubino-Mart'in | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | B. Wandelt | F. Bouchet | S. Zaroubi | S. Matarrese | A. Balbi | J. Borrill | P. Bernardis | G. Smoot | J. Bond | B. Crill | K. Ganga | W. Jones | S. Masi | F. Piacentini | S. Prunet | M. Juvela | J. Diego | A. Silva | S. White | R. Rebolo | A. Coulais | T. Poutanen | A. Gregorio | P. Christensen | M. Ashdown | C. Lawrence | B. Rusholme | E. Pierpaoli | R. Davis | F. Atrio-Barandela | T. Jaffe | H. Eriksen | S. Plaszczynski | H. Nørgaard-Nielsen | C. Dickinson | M. Brown | P. Ade | M. Arnaud | J. Aumont | E. Battaner | A. Benoit | J. Bernard | M. Bersanelli | A. Bonaldi | C. Burigana | A. Catalano | L. Chiang | D. Clements | L. Colombo | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | F. D'esert | H. Dole | S. Donzelli | O. Dor'e | X. Dupac | F. Finelli | E. Franceschi | S. Galeotta | M. Giard | J. Gonz'alez-Nuevo | K. M. G'orski | A. Gruppuso | D. Harrison | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | S. Hildebrandt | W. Holmes | A. Hornstrup | W. Hovest | K. Huffenberger | E. Keihanen | R. Kneissl | J. Knoche | L. Knox | G. Lagache | A. Lahteenmaki | J. Lamarre | M. Jeune | R. Leonardi | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | B. Maffei | D. Maino | N. Mandolesi | M. Maris | E. Mart'inez-Gonz'alez | F. Matthai | P. Mazzotta | L. Mendes | A. Mennella | S. Mitra | M. Miville-Deschênes | A. Moneti | L. Montier | D. Munshi | P. Naselsky | P. Natoli | F. Noviello | D. Novikov | I. Novikov | S. Osborne | F. Pajot | D. Paoletti | O. Perdereau | F. Perrotta | M. Piat | E. Pointecouteau | G. Polenta | N. Ponthieu | L. Popa | G. Pratt | J. Puget | J. Rachen | M. Remazeilles | C. Renault | S. Ricciardi | T. Riller | I. Ristorcelli | G. Rocha | C. Rosset | M. Sandri | G. Savini | R. Sudiwala | R. Sunyaev | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Turler | G. Umana | B. Tent | J. Varis | P. Vielva | F. Villa | N. Vittorio | L. Wade | D. Yvon | A. Zonca | K. Dolag | M. Massardi | J. Melin | J. Murphy | H. Dahle | S. Mei | J. Cardoso | G. Hurier | M. Rossetti | G. Gasperis | P. Cabella | M. Frommert | I. Khamitov | M. Gilfanov | S. Colafrancesco | N. Welikala | I. Bikmaev | H. Bohringer | R. Burenin | P. Carvalho | G. Chon | I. Flores-Cacho | E. Churazov | L. Rudnick | R. Piffaretti | S. Brown | H. Bourdin | J. D'emocles | F. Marleau | M. Roman | B. Schaefer | F. Stivoli | T. Jagemann | U. Dorl | L. Cay'on | D. Scott | P. Christensen | S. White | D. Scott | D. Scott | J. Murphy | G. Rocha | J. Murphy | J. Bond | D. Harrison | C. Lawrence

[1]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[2]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. I. THE INFLUENCE OF FEEDBACK, NON-THERMAL PRESSURE, AND CLUSTER SHAPES ON Y–M SCALING RELATIONS , 2011, 1109.3709.

[3]  P. Mazzotta,et al.  Discovery of the correspondence between intra-cluster radio emission and a high pressure region detected through the Sunyaev-Zel’dovich effect , 2011, 1107.5945.

[4]  S. Borgani,et al.  A non-ideal magnetohydrodynamic GADGET: simulating massive galaxy clusters , 2011, 1107.0968.

[5]  L. Toffolatti,et al.  Planck early results. III. First assessment of the Low Frequency , 2011, 1101.2038.

[6]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[7]  R. B. Barreiro,et al.  Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance , 2011, 1101.2039.

[8]  R. Laing,et al.  Ordered magnetic fields around radio galaxies: evidence for interaction with the environment , 2011, 1101.1807.

[9]  C. Benoist,et al.  A2163: Merger events in the hottest Abell galaxy cluster - II. Subcluster accretion with galaxy-gas separation , 2010, 1011.3154.

[10]  Cfa,et al.  A SHOCK FRONT IN THE MERGING GALAXY CLUSTER A754: X-RAY AND RADIO OBSERVATIONS , 2010, 1010.5209.

[11]  H. Röttgering,et al.  Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster , 2010, Science.

[12]  Shea Brown,et al.  Diffuse radio emission in/around the Coma cluster: beyond simple accretion , 2010, 1009.4258.

[13]  Julian Borrill,et al.  Planck pre-launch status: Expected LFI polarisation capability , 2010 .

[14]  T. Maciaszek,et al.  Planck pre-launch status: The HFI instrument, from specification to actual performance , 2010 .

[15]  T. Ensslin,et al.  Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating , 2010, 1008.4717.

[16]  A. Lazarian,et al.  Acceleration of primary and secondary particles in galaxy clusters by compressible MHD turbulence: from radio haloes to gamma-rays , 2010, 1008.0184.

[17]  J. Cardoso,et al.  CMB and SZ effect separation with constrained Internal Linear Combinations , 2010, 1006.5599.

[18]  T. Jeltema,et al.  IMPLICATIONS OF FERMI OBSERVATIONS FOR HADRONIC MODELS OF RADIO HALOS IN CLUSTERS OF GALAXIES , 2010, 1006.1648.

[19]  P. Ade,et al.  Planck pre-launch status: High Frequency Instrument polarization calibration , 2010, 1004.2595.

[20]  A. Loeb,et al.  USING RADIO HALOS AND MINIHALOS TO MEASURE THE DISTRIBUTIONS OF MAGNETIC FIELDS AND COSMIC RAYS IN GALAXY CLUSTERS , 2010, 1003.1133.

[21]  K. Dolag,et al.  Radio haloes from simulations and hadronic models - II. The scaling relations of radio haloes , 2010, 1003.0336.

[22]  F. Pasian,et al.  Planck pre-launch status: Design and description of the Low Frequency Instrument , 2010, 1001.3321.

[23]  K. Mannheim,et al.  EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS , 2010, 1001.1170.

[24]  A. Loeb,et al.  DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS , 2009, 0912.3526.

[25]  M. Meneghetti,et al.  Weighing simulated galaxy clusters using lensing and X-ray , 2009, 0912.1343.

[26]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[27]  K. Dolag,et al.  The Coma cluster magnetic field from Faraday rotation measures , 2009, 1002.0594.

[28]  A. Richard Thompson,et al.  The Atacama Large Millimeter/Submillimeter Array , 2009, Proceedings of the IEEE.

[29]  E. Bulbul,et al.  THE DIFFUSE SOFT EXCESS EMISSION IN THE COMA CLUSTER FROM THE ROSAT ALL-SKY SURVEY , 2009, 0903.3067.

[30]  E. Waxman,et al.  Magnetic fields and cosmic rays in clusters of galaxies , 2009, 0903.2275.

[31]  R. Piffaretti,et al.  Total mass biases in X-ray galaxy clusters , 2008, 0808.1111.

[32]  D. Ryu,et al.  Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe , 2008, Science.

[33]  S. Bardelli,et al.  Shock acceleration as origin of the radio relic in A 521 , 2008, 0803.4127.

[34]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[35]  P. Mazzotta,et al.  Temperature structure of the intergalactic medium within seven nearby and bright clusters of galaxies observed with XMM-Newton , 2008, 0802.1866.

[36]  S. L. Snowden,et al.  A Catalog of Galaxy Clusters Observed by XMM-Newton , 2007, 0710.2241.

[37]  T. Ensslin,et al.  Simulating cosmic rays in clusters of galaxies – II. A unified scheme for radio haloes and relics with predictions of the γ-ray emission , 2007, 0707.1707.

[38]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[39]  K. Dolag,et al.  New scaling relations in cluster radio haloes and the re‐acceleration model , 2007, 0704.3490.

[40]  R. Cen,et al.  Cosmological Shock Waves in the Large-Scale Structure of the Universe: Nongravitational Effects , 2007, 0704.1521.

[41]  C. Salter,et al.  Discovery of New Faint Radio Emission on 8° to 3' Scales in the Coma Field, and Some Galactic and Extragalactic Implications , 2007, 0704.3288.

[42]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[43]  J. Fadili,et al.  SZ and CMB reconstruction using generalized morphological component analysis , 2007, 0712.0588.

[44]  K. Dolag,et al.  Turbulent velocity fields in smoothed particle hydrodymanics simulated galaxy clusters: scaling laws for the turbulent energy , 2006 .

[45]  T. Ensslin,et al.  Detecting shock waves in cosmological smoothed particle hydrodynamics simulations , 2006, astro-ph/0603483.

[46]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[47]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[48]  Moscow,et al.  Bow Shock and Radio Halo in the Merging Cluster A520 , 2004, astro-ph/0412451.

[49]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[50]  R. Saunders,et al.  Very Small Array observations of the Sunyaev-Zel'dovich effect in nearby galaxy clusters , 2004, astro-ph/0405582.

[51]  L. Moscardini,et al.  Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations , 2004, astro-ph/0404425.

[52]  A. Finoguenov,et al.  Probing turbulence in the Coma galaxy cluster , 2004 .

[53]  H. K. Eriksen,et al.  On Foreground Removal from the Wilkinson Microwave Anisotropy Probe Data by an Internal Linear Combination Method: Limitations and Implications , 2004, astro-ph/0403098.

[54]  Padova,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2003, astro-ph/0310794.

[55]  K. Blundell,et al.  Lowering Inferred Cluster Magnetic Field Strengths: The Radio Galaxy Contributions , 2003, astro-ph/0301260.

[56]  M. Bonamente,et al.  A Massive Warm Baryonic Halo in the Coma Cluster , 2002, astro-ph/0211439.

[57]  Garching,et al.  The dynamical state of the Coma cluster with XMM-Newton ? , 2002, astro-ph/0212432.

[58]  Lawrence Rudnick,et al.  Simple Multiresolution Filtering and the Spectra of Radio Galaxies and Supernova Remnants , 2002 .

[59]  MITO Measurements of the Sunyaev-Zeldovich Effect in the Coma Cluster of Galaxies , 2002, astro-ph/0203303.

[60]  T. Ensslin,et al.  A comparison of radio and X-ray morphologies of four clusters of galaxies containing radio halos , 2001, astro-ph/0101418.

[61]  V. Petrosian On the Nonthermal Emission and Acceleration of Electrons in Coma and Other Clusters of Galaxies , 2001, astro-ph/0101145.

[62]  Los Alamos National Laboratory,et al.  XMM- Newton Observation of the Coma Galaxy Cluster : The temperature structure in the central region , 2000, astro-ph/0011086.

[63]  G. Giovannini,et al.  Particle reacceleration in the Coma cluster: radio properties and hard X‐ray emission , 2000, astro-ph/0008518.

[64]  R. Cen,et al.  Properties of Cosmic Shock Waves in Large-Scale Structure Formation , 2000, astro-ph/0005444.

[65]  C. Sarazin The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission , 1999, astro-ph/9901061.

[66]  J. Puchalla,et al.  Millimeter/Submillimeter Search for the Sunyaev-Zeldovich Effect in the Coma Cluster , 1996, astro-ph/9607031.

[67]  W. Forman,et al.  Another Collision for the Coma Cluster , 1996, astro-ph/9610151.

[68]  C. Lawrence,et al.  A Measurement of the Sunyaev-Zel'dovich Effect in the Coma Cluster of Galaxies , 1995 .

[69]  S. White,et al.  ROSAT observations of Coma Cluster galaxies , 1995 .

[70]  G. Giovannini,et al.  The halo radio source Coma C and the origin of halo sources , 1993 .

[71]  S. White,et al.  X-ray archaeology in the coma cluster , 1993 .

[72]  W. Vestrand Coma-type radio halos and cluster X-ray morphology , 1982 .

[73]  B. Dennison,et al.  Formation of radio halos in clusters of galaxies from cosmic-ray protons , 1980 .