Chattering free full-order sliding-mode control

In conventional sliding-mode control systems, the sliding-mode motion is of reduced order. Two main problems hindering the application of the sliding-mode control are the singularity in terminal sliding-mode control systems and the chattering in both the conventional linear sliding-mode and the terminal sliding-mode control systems. This paper proposes a chattering-free full-order terminal-sliding-mode control scheme. Since the derivatives of terms with fractional powers do not appear in the control law, the control singularities are avoided. A continuous control strategy is developed to achieve the chattering free sliding-mode control. During the ideal sliding-mode motion, the systems behave as a desirable full-order dynamics rather than a desirable reduced-order dynamics. A systematic design method of full-order sliding-mode control for nonlinear systems is presented, which allows both the chattering and singularity problems to be resolved. Simulations validate the proposed chattering free full-order sliding-mode control.

[1]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[2]  Asif Sabanoviç,et al.  Variable Structure Systems With Sliding Modes in Motion Control—A Survey , 2011, IEEE Transactions on Industrial Informatics.

[3]  Zhihong Man,et al.  Terminal sliding mode observers for a class of nonlinear systems , 2010, Autom..

[4]  Daizhan Cheng,et al.  Finite time convergent control using terminal sliding mode , 2004 .

[5]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[6]  Yuri B. Shtessel,et al.  AN ASYMPTOTIC SECOND‐ORDER SMOOTH SLIDING MODE CONTROL , 2003 .

[7]  S. Bhat,et al.  Finite-time stability of homogeneous systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[8]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[9]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[10]  Chian-Song Chiu,et al.  Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems , 2012, Autom..

[11]  Xu Zibin,et al.  Backstepping control for a class of uncertain systems based on non-singular terminal sliding mode , 2009, 2009 International Conference on Industrial Mechatronics and Automation.

[12]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[13]  Arie Levant,et al.  Homogeneity approach to high-order sliding mode design , 2005, Autom..

[14]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[15]  Michael Defoort,et al.  A novel higher order sliding mode control scheme , 2009, Syst. Control. Lett..

[16]  Xinghuo Yu,et al.  Terminal sliding mode control of MIMO linear systems , 1997 .

[17]  A. Levant Universal SISO sliding-mode controllers with finite-time convergence , 2001 .

[18]  G. Bartolini,et al.  Chattering avoidance by second-order sliding mode control , 1998, IEEE Trans. Autom. Control..

[19]  Ziyang Meng,et al.  Distributed finite-time attitude containment control for multiple rigid bodies , 2010, Autom..

[20]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[21]  Jie Huang,et al.  Finite-time control for robot manipulators , 2002, Syst. Control. Lett..

[22]  Igor Boiko,et al.  On frequency-domain criterion of finite-time convergence of second-order sliding mode control algorithms , 2011, Autom..

[23]  Arie Levant,et al.  Principles of 2-sliding mode design , 2007, Autom..

[24]  Xinghuo Yu,et al.  Hybrid Terminal Sliding-Mode Observer Design Method for a Permanent-Magnet Synchronous Motor Control System , 2009, IEEE Transactions on Industrial Electronics.

[25]  Xinghuo Yu,et al.  On nonsingular terminal sliding-mode control of nonlinear systems , 2013, Autom..

[26]  Xinghuo Yu,et al.  High-Order Terminal Sliding-Mode Observer for Parameter Estimation of a Permanent-Magnet Synchronous Motor , 2013, IEEE Transactions on Industrial Electronics.