Iterative solution of linear systems
暂无分享,去创建一个
[1] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[2] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[3] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[4] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[5] E. Stiefel,et al. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .
[6] E. J. Craig. The N‐Step Iteration Procedures , 1955 .
[7] R. Varga,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[8] I. M. Khabaza. An Iterative Least-Square Method Suitable for Solving Large Sparse Matrices , 1963, Comput. J..
[9] V. Fridman,et al. The method of minimum iterations with minimum errors for a system of linear algebraic equations with a symmetrical matrix , 1963 .
[10] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[11] C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .
[12] R W Hockney,et al. Computer Simulation Using Particles , 1966 .
[13] D. Luenberger. Hyperbolic Pairs in the Method of Conjugate Gradients , 1969 .
[14] J. Reid. Large Sparse Sets of Linear Equations , 1973 .
[15] W. Gragg. Matrix interpretations and applications of the continued fraction algorithm , 1974 .
[16] R. Glowinski,et al. Computing Methods in Applied Sciences and Engineering , 1974 .
[17] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[18] P. K. W. Vinsome,et al. Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .
[19] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[20] S. Kung. Multivariable and multidimensional systems: Analysis and design , 1977 .
[21] T. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems , 1977 .
[22] T. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .
[23] D. Rapoport. A nonlinear lanczos algorithm and the stationary navier-stokes equation. , 1978 .
[24] R. Chandra. Conjugate gradient methods for partial differential equations. , 1978 .
[25] O. Widlund. A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .
[26] O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .
[27] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[28] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[29] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[30] Y. Saad. The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .
[31] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[32] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[33] D. Taylor. Analysis of the Look Ahead Lanczos Algorithm. , 1982 .
[34] Josef Stoer,et al. Solution of Large Linear Systems of Equations by Conjugate Gradient Type Methods , 1982, ISMP.
[35] A. Draux. Polynômes orthogonaux formels : applications , 1983 .
[36] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[37] Roland Freund,et al. Über einige CG-ähnliche Verfahren zur Lösung linearer Gleichungssysteme , 1983 .
[38] Martin Grötschel,et al. Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.
[39] V. V. Voevodin. The question of non-self-adjoint extension of the conjugate gradients method is closed , 1983 .
[40] Stanley C. Eisenstat. A Note on the Generalized Conjugate Gradient Method , 1983 .
[41] A. Bayliss,et al. An Iterative method for the Helmholtz equation , 1983 .
[42] Gene H. Golub,et al. Matrix computations , 1983 .
[43] Stanley C. Eisenstat. Some observations on the generalized conjugate gradient method , 1983 .
[44] André Draux,et al. Polynomes Orthogonaux-Formels , 1983 .
[45] W. Gragg,et al. On the partial realization problem , 1983 .
[46] Y. Saad,et al. Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .
[47] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[48] Georg Heinig,et al. Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .
[49] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[50] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[51] Owe Axelsson,et al. A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .
[52] Andrew W. Appel,et al. An Efficient Program for Many-Body Simulation , 1983 .
[53] Richard S. Varga,et al. A study of semiiterative methods for nonsymmetric systems of linear equations , 1985 .
[54] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[55] Y. Saad,et al. Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .
[56] Steven E. Laux,et al. Techniques for small-signal analysis of semiconductor devices , 1985, IEEE Transactions on Electron Devices.
[57] R. Freund,et al. On a class of Chebyshev approximation problems which arise in connection with a conjugate gradient type method , 1986 .
[58] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[59] G. Kreisselmeier. Adaptive control of a class of slowly time-varying plants , 1986 .
[60] J. Cullum,et al. A Practical Procedure for Computing Eigenvalues of Large Sparse Nonsymmetric Matrices , 1986 .
[61] Philip E. Gibbs,et al. Updating Fermions With the Lanczos Method , 1987 .
[62] Thomas A. Manteuffel,et al. Orthogonal error methods , 1987 .
[63] W. Joubert,et al. Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .
[64] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[65] O. Axelsson. A generalized conjugate gradient, least square method , 1987 .
[66] Axel Ruhe. Closest normal matrix finally found! , 1987 .
[67] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[68] B. Szyld,et al. VARIATIONAL ANALYSIS OF SOME CONJUGATE GRADIENTMETHODSDANIEL , 1989 .
[69] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[70] G. Strang,et al. Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .
[71] Y. Saad,et al. Krylov Subspace Methods on Supercomputers , 1989 .
[72] O. Nevanlinna,et al. Accelerating with rank-one updates , 1989 .
[73] R. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .
[74] W. Joubert. Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations , 1990 .
[75] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[76] R. Freund,et al. On the constrained Chebyshev approximation problem on ellipses , 1990 .
[77] Rüdiger Weiss,et al. Convergence behavior of generalized conjugate gradient methods , 1990 .
[78] Paul E. Saylor,et al. Implementation of an adaptive algorithm for Richardson's method , 1990 .
[79] M. Gutknecht. The Unsymmetric Lanczos Algorithms And Their Relations To Pad ' E Approximation, Continued Fractions , 1990 .
[80] Peter Deuflhard,et al. Fast secant methods for the iterative solution of large nonsymmetric linear systems , 1990, IMPACT Comput. Sci. Eng..
[81] N. Nachtigal. A look-ahead variant of the Lanczos algorithm and its application to the quasi-minimal residual method for non-Hermitian linear systems. Ph.D. Thesis - Massachusetts Inst. of Technology, Aug. 1991 , 1991 .
[82] R. Freund,et al. Chebyshev polynomials are not always optimal , 1991 .
[83] Michael T. Heath,et al. Parallel Algorithms for Sparse Linear Systems , 1991, SIAM Rev..
[84] Pat Hanrahan,et al. A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.
[85] HanrahanPat,et al. A rapid hierarchical radiosity algorithm , 1991 .
[86] Krylov subspace methods for complex non-Hermitian linear systems. Thesis , 1991 .
[87] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[88] C. Brezinski,et al. A breakdown-free Lanczos type algorithm for solving linear systems , 1992 .
[89] R. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .
[90] Martin H. Gutknecht,et al. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..
[91] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[92] Beresford N. Parlett,et al. Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..
[93] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[94] Michael A. Saunders,et al. Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..
[95] H. V. D. Vorst,et al. A comparison of some GMRES-like methods , 1992 .
[96] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[97] Lloyd N. Trefethen,et al. A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[98] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[99] Michael Eiermann,et al. Fields of values and iterative methods , 1993 .
[100] R. Varga,et al. A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations , 1993 .
[101] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[102] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[103] Owe Axelsson. Generalized Conjugate Gradient Methods , 1994 .
[104] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[105] J. CARRIERt,et al. A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .