Iterative solution of linear systems

Recent advances in the field of iterative methods for solving large linear systems are reviewed. The main focus is on developments in the area of conjugate gradient-type algorithms and Krylov subspace methods for nonHermitian matrices.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[3]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[4]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[5]  E. Stiefel,et al.  Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .

[6]  E. J. Craig The N‐Step Iteration Procedures , 1955 .

[7]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[8]  I. M. Khabaza An Iterative Least-Square Method Suitable for Solving Large Sparse Matrices , 1963, Comput. J..

[9]  V. Fridman,et al.  The method of minimum iterations with minimum errors for a system of linear algebraic equations with a symmetrical matrix , 1963 .

[10]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[11]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[12]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[13]  D. Luenberger Hyperbolic Pairs in the Method of Conjugate Gradients , 1969 .

[14]  J. Reid Large Sparse Sets of Linear Equations , 1973 .

[15]  W. Gragg Matrix interpretations and applications of the continued fraction algorithm , 1974 .

[16]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[17]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[18]  P. K. W. Vinsome,et al.  Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .

[19]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[20]  S. Kung Multivariable and multidimensional systems: Analysis and design , 1977 .

[21]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[22]  T. Manteuffel Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .

[23]  D. Rapoport A nonlinear lanczos algorithm and the stationary navier-stokes equation. , 1978 .

[24]  R. Chandra Conjugate gradient methods for partial differential equations. , 1978 .

[25]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[26]  O. Axelsson Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .

[27]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[28]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[29]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[30]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[31]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[32]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[33]  D. Taylor Analysis of the Look Ahead Lanczos Algorithm. , 1982 .

[34]  Josef Stoer,et al.  Solution of Large Linear Systems of Equations by Conjugate Gradient Type Methods , 1982, ISMP.

[35]  A. Draux Polynômes orthogonaux formels : applications , 1983 .

[36]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[37]  Roland Freund,et al.  Über einige CG-ähnliche Verfahren zur Lösung linearer Gleichungssysteme , 1983 .

[38]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[39]  V. V. Voevodin The question of non-self-adjoint extension of the conjugate gradients method is closed , 1983 .

[40]  Stanley C. Eisenstat A Note on the Generalized Conjugate Gradient Method , 1983 .

[41]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[42]  Gene H. Golub,et al.  Matrix computations , 1983 .

[43]  Stanley C. Eisenstat Some observations on the generalized conjugate gradient method , 1983 .

[44]  André Draux,et al.  Polynomes Orthogonaux-Formels , 1983 .

[45]  W. Gragg,et al.  On the partial realization problem , 1983 .

[46]  Y. Saad,et al.  Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .

[47]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[48]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[49]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[50]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[51]  Owe Axelsson,et al.  A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .

[52]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[53]  Richard S. Varga,et al.  A study of semiiterative methods for nonsymmetric systems of linear equations , 1985 .

[54]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[55]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[56]  Steven E. Laux,et al.  Techniques for small-signal analysis of semiconductor devices , 1985, IEEE Transactions on Electron Devices.

[57]  R. Freund,et al.  On a class of Chebyshev approximation problems which arise in connection with a conjugate gradient type method , 1986 .

[58]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[59]  G. Kreisselmeier Adaptive control of a class of slowly time-varying plants , 1986 .

[60]  J. Cullum,et al.  A Practical Procedure for Computing Eigenvalues of Large Sparse Nonsymmetric Matrices , 1986 .

[61]  Philip E. Gibbs,et al.  Updating Fermions With the Lanczos Method , 1987 .

[62]  Thomas A. Manteuffel,et al.  Orthogonal error methods , 1987 .

[63]  W. Joubert,et al.  Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .

[64]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[65]  O. Axelsson A generalized conjugate gradient, least square method , 1987 .

[66]  Axel Ruhe Closest normal matrix finally found! , 1987 .

[67]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[68]  B. Szyld,et al.  VARIATIONAL ANALYSIS OF SOME CONJUGATE GRADIENTMETHODSDANIEL , 1989 .

[69]  Gene H. Golub,et al.  Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..

[70]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[71]  Y. Saad,et al.  Krylov Subspace Methods on Supercomputers , 1989 .

[72]  O. Nevanlinna,et al.  Accelerating with rank-one updates , 1989 .

[73]  R. Freund On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .

[74]  W. Joubert Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations , 1990 .

[75]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[76]  R. Freund,et al.  On the constrained Chebyshev approximation problem on ellipses , 1990 .

[77]  Rüdiger Weiss,et al.  Convergence behavior of generalized conjugate gradient methods , 1990 .

[78]  Paul E. Saylor,et al.  Implementation of an adaptive algorithm for Richardson's method , 1990 .

[79]  M. Gutknecht The Unsymmetric Lanczos Algorithms And Their Relations To Pad ' E Approximation, Continued Fractions , 1990 .

[80]  Peter Deuflhard,et al.  Fast secant methods for the iterative solution of large nonsymmetric linear systems , 1990, IMPACT Comput. Sci. Eng..

[81]  N. Nachtigal A look-ahead variant of the Lanczos algorithm and its application to the quasi-minimal residual method for non-Hermitian linear systems. Ph.D. Thesis - Massachusetts Inst. of Technology, Aug. 1991 , 1991 .

[82]  R. Freund,et al.  Chebyshev polynomials are not always optimal , 1991 .

[83]  Michael T. Heath,et al.  Parallel Algorithms for Sparse Linear Systems , 1991, SIAM Rev..

[84]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[85]  HanrahanPat,et al.  A rapid hierarchical radiosity algorithm , 1991 .

[86]  Krylov subspace methods for complex non-Hermitian linear systems. Thesis , 1991 .

[87]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[88]  C. Brezinski,et al.  A breakdown-free Lanczos type algorithm for solving linear systems , 1992 .

[89]  R. Freund Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .

[90]  Martin H. Gutknecht,et al.  A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..

[91]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[92]  Beresford N. Parlett,et al.  Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..

[93]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[94]  Michael A. Saunders,et al.  Preconditioners for Indefinite Systems Arising in Optimization , 1992, SIAM J. Matrix Anal. Appl..

[95]  H. V. D. Vorst,et al.  A comparison of some GMRES-like methods , 1992 .

[96]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[97]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[98]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[99]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[100]  R. Varga,et al.  A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations , 1993 .

[101]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[102]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[103]  Owe Axelsson Generalized Conjugate Gradient Methods , 1994 .

[104]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..

[105]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .