Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints

We study second-order optimality conditions for mathematical programs with equilibrium constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear programming problems using some newly discovered constraint qualifications in the literature, and apply them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which are all weaker than the MPEC linear independence constraint qualification, and derive several second-order optimality conditions for MPEC under the new MPEC constraint qualifications. Finally, we discuss the isolatedness of local minimizers for MPEC under very weak conditions.

[1]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[2]  Paulo J. S. Silva,et al.  A relaxed constant positive linear dependence constraint qualification and applications , 2011, Mathematical Programming.

[3]  R. Andreani,et al.  Constant-Rank Condition and Second-Order Constraint Qualification , 2010 .

[4]  G. McCormick Second Order Conditions for Constrained Minima , 1967 .

[5]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[6]  Lei Guo,et al.  Solving Mathematical Programs with Equilibrium Constraints , 2015, J. Optim. Theory Appl..

[7]  M. Fukushima,et al.  Smoothing methods for mathematical programs with equilibrium constraints , 2004, International Conference on Informatics Research for Development of Knowledge Society Infrastructure, 2004. ICKS 2004..

[8]  Jane J. Ye,et al.  Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints , 2014, J. Optim. Theory Appl..

[9]  Paulo J. S. Silva,et al.  Two New Weak Constraint Qualifications and Applications , 2012, SIAM J. Optim..

[10]  Gui-Hua Lin,et al.  A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints , 2002, Ann. Oper. Res..

[11]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[12]  Alexey F. Izmailov,et al.  An Active-Set Newton Method for Mathematical Programs with Complementarity Constraints , 2008, SIAM J. Optim..

[13]  Lei Guo,et al.  Stability Analysis for Parametric Mathematical Programs with Geometric Constraints and Its Applications , 2012, SIAM J. Optim..

[14]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[15]  Nicholas I. M. Gould,et al.  A note on the convergence of barrier algorithms to second-order necessary points , 1999, Math. Program..

[16]  Christian Kanzow,et al.  Mathematical Programs with Equilibrium Constraints: Enhanced Fritz John-conditions, New Constraint Qualifications, and Improved Exact Penalty Results , 2010, SIAM J. Optim..

[17]  Christian Kanzow,et al.  A New Regularization Method for Mathematical Programs with Complementarity Constraints with Strong Convergence Properties , 2013, SIAM J. Optim..

[18]  C. Kanzow,et al.  On the Guignard constraint qualification for mathematical programs with equilibrium constraints , 2005 .

[19]  Mihai Anitescu,et al.  Degenerate Nonlinear Programming with a Quadratic Growth Condition , 1999, SIAM J. Optim..

[20]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[21]  John L. Klepeis,et al.  Bilevel Programming Problems , 1999 .

[22]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[23]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[24]  A. F. Izmailov Mathematical Programs with Complementarity Constraints: Regularity, Optimality Conditions, and Sensitivity , 2004 .

[25]  M. Guignard Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .

[26]  James V. Burke,et al.  Calmness and exact penalization , 1991 .

[27]  Lei Guo,et al.  Notes on Some Constraint Qualifications for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[28]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[29]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[30]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[31]  J. M. Martínez,et al.  On second-order optimality conditions for nonlinear programming , 2007 .

[32]  A. Arutyunov,et al.  Perturbations of extremal problems with constraints and necessary optimality conditions , 1991 .

[33]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[34]  R. Andreani,et al.  On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification , 2005 .

[35]  Liqun Qi,et al.  Corrigendum: On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 2000, SIAM J. Optim..

[36]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[37]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[38]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[39]  Christian Kanzow,et al.  Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints , 2011, Mathematical Programming.

[40]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[41]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[42]  Jane J. Ye,et al.  Optimality Conditions for Optimization Problems with Complementarity Constraints , 1999, SIAM J. Optim..

[43]  Leonid Minchenko,et al.  Parametric Nonlinear Programming Problems under the Relaxed Constant Rank Condition , 2011, SIAM J. Optim..

[44]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[45]  D. Ralph,et al.  Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints , 2004 .

[46]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[47]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .