CoinNet: Deep Ancient Roman Republican Coin Classification via Feature Fusion and Attention

[1]  Xiaobo Jin,et al.  Attentive Region Embedding Network for Zero-Shot Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Ognjen Arandjelovic,et al.  Understanding Ancient Coin Images , 2019, INNSBDDL.

[3]  Bernt Schiele,et al.  Meta-Transfer Learning for Few-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Yixin Chen,et al.  SHOW , 2018, Silent Cinema.

[5]  Yun Fu,et al.  Image Super-Resolution Using Very Deep Residual Channel Attention Networks , 2018, ECCV.

[6]  Vijay Vasudevan,et al.  Learning Transferable Architectures for Scalable Image Recognition , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Ognjen Arandjelovic,et al.  Ancient Roman Coin Recognition in the Wild Using Deep Learning Based Recognition of Artistically Depicted Face Profiles , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[8]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[9]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Trevor Darrell,et al.  Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding , 2016, EMNLP.

[11]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Yang Gao,et al.  Compact Bilinear Pooling , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Alexander J. Smola,et al.  Stacked Attention Networks for Image Question Answering , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Vladimir Pavlovic,et al.  Discovering characteristic landmarks on ancient coins using convolutional networks , 2016, J. Electronic Imaging.

[15]  Martin Kampel,et al.  Ancient Coin Classification Using Reverse Motif Recognition: Image-based classification of Roman Republican coins , 2015, IEEE Signal Processing Magazine.

[16]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[17]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[18]  Vladimir Pavlovic,et al.  Improving Ancient Roman Coin Recognition with Alignment and Spatial Encoding , 2014, ECCV Workshops.

[19]  Martin Kampel,et al.  Classifying Ancient Coins by Local Feature Matching and Pairwise Geometric Consistency Evaluation , 2014, 2014 22nd International Conference on Pattern Recognition.

[20]  Vladimir Pavlovic,et al.  Ancient Coin Recognition Based on Spatial Coding , 2014, 2014 22nd International Conference on Pattern Recognition.

[21]  Ching Y. Suen,et al.  Automatic recognition of serial numbers in bank notes , 2014, Pattern Recognit..

[22]  Martin Kampel,et al.  Reading the legends of Roman Republican coins , 2014, JOCCH.

[23]  Martin Kampel,et al.  Improving Ancient Roman Coin Classification by Fusing Exemplar-Based Classification and Legend Recognition , 2013, ICIAP Workshops.

[24]  Rasmus Pagh,et al.  Fast and scalable polynomial kernels via explicit feature maps , 2013, KDD.

[25]  Martin Kampel,et al.  THE ILAC-PROJECT: SUPPORTING ANCIENT COIN CLASSIFICATION BY MEANS OF IMAGE ANALYSIS , 2013 .

[26]  Martin Kampel,et al.  A Local Image Descriptor Robust to Illumination Changes , 2013, SCIA.

[27]  Martin Kampel,et al.  A Bag of Visual Words Approach for Symbols-Based Coarse-Grained Ancient Coin Classification , 2013, ArXiv.

[28]  Martin Kampel,et al.  Word detection applied to images of ancient Roman coins , 2012, 2012 18th International Conference on Virtual Systems and Multimedia.

[29]  Martin Kampel,et al.  Coarse-to-Fine Correspondence Search for Classifying Ancient Coins , 2012, ACCV Workshops.

[30]  Ognjen Arandjelovic,et al.  Reading Ancient Coins: Automatically Identifying Denarii Using Obverse Legend Seeded Retrieval , 2012, ECCV.

[31]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Martin Kampel,et al.  Identification of ancient coins based on fusion of shape and local features , 2011, Machine Vision and Applications.

[33]  Ognjen Arandjelovic,et al.  Automatic attribution of ancient Roman imperial coins , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[35]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Martin Kampel,et al.  Recognizing Ancient Coins Based on Local Features , 2008, ISVC.

[37]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[38]  Martin Kampel,et al.  Image Based Recognition of Ancient Coins , 2007, CAIP.

[39]  Hans Burkhardt,et al.  An Efficient Gradient Based Registration Technique for Coin Recognition , 2006 .

[40]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[41]  C. Schmid,et al.  A performance evaluation of local descriptors , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[42]  Bernhard Woytek Arma et nummi : Forschungen zur römischen Finanzgeschichte und Münzprägung der Jahre 49 bis 42 v. Chr. , 2003 .

[43]  Igor Holländer,et al.  Dagobert - A New Coin Recognition and Sorting System , 2003, DICTA.

[44]  Moses Charikar,et al.  Finding frequent items in data streams , 2002, Theor. Comput. Sci..

[45]  P. Duygulu,et al.  Visual categorization with bags of keypoints , 2002, eccv 2002.

[46]  Joshua B. Tenenbaum,et al.  Separating Style and Content with Bilinear Models , 2000, Neural Computation.

[47]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[48]  Michael H. Crawford,et al.  Roman Republican coinage , 1975 .