Bilateral Tempered Fractional Derivatives

The bilateral tempered fractional derivatives are introduced generalising previous works on the one-sided tempered fractional derivatives and the two-sided fractional derivatives. An analysis of the tempered Riesz potential is done and shows that it cannot be considered as a derivative.

[1]  Yanzhi Zhang,et al.  Numerical Approximations for the Tempered Fractional Laplacian: Error Analysis and Applications , 2019, J. Sci. Comput..

[2]  Xuenian Cao,et al.  The implicit midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term , 2019, Advances in Difference Equations.

[3]  W. Deng,et al.  Feynman–Kac equations for reaction and diffusion processes , 2017, 1706.01512.

[4]  N. Shephard,et al.  Normal Modified Stable Processes , 2001 .

[5]  Hanyga,et al.  Wave propagation in micro-heterogeneous porous media: a model based on an integro-differential wave equation , 2000, The Journal of the Acoustical Society of America.

[6]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[7]  Qian Li,et al.  High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I) , 2018, Appl. Math. Comput..

[8]  Gabriel Bengochea,et al.  Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron , 2021 .

[9]  M. Ortigueira Fractional Central Differences and Derivatives , 2008 .

[10]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[11]  M. Ortigueira Two‐sided and regularised Riesz‐Feller derivatives , 2019, Mathematical Methods in the Applied Sciences.

[12]  Mark M. Meerschaert,et al.  Tempered stable laws as random walk limits , 2010, 1007.3474.

[13]  M. Meerschaert Fractional calculus, anomalous diffusion, and probability , 2011 .

[14]  Weihua Deng,et al.  High order schemes for the tempered fractional diffusion equations , 2016, Adv. Comput. Math..

[15]  José António Tenreiro Machado,et al.  What is a fractional derivative? , 2015, J. Comput. Phys..

[16]  I. M. Sokolov,et al.  Fractional diffusion equation for a power-law-truncated Lévy process , 2004 .

[17]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[18]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[19]  J. Rosínski Tempering stable processes , 2007 .

[20]  Mehdi Dehghan,et al.  Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation , 2017, Appl. Math. Lett..

[21]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[22]  D. Madan,et al.  1option Pricing with V. G. Martingale Components , 1991 .

[23]  Abdul-Qayyum M. Khaliq,et al.  Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative , 2017, J. Comput. Phys..