Graph-based fire synthesis

We present a novel graph-based data-driven technique for cost-effective fire modeling. This technique allows composing long animation sequences using a small number of short simulations. While traditional techniques such as motion graphs and motion blending work well for character motion synthesis, they cannot be trivially applied to fluids to produce results with physically consistent properties which are crucial to the visual appearance of fluids. Motivated by the motion graph technique used in character animations, we introduce a new type of graph which can be applied to create various fire phenomena. Each graph node consists of a group of compact spatial-temporal flow pathlines instead of a set of volumetric state fields. Consequently, achieving smooth transitions between discontinuous graph nodes for modeling turbulent fires becomes feasible and computationally efficient. The synthesized particle flow results allow direct particle controls which is much more flexible than a full volumetric representation of the simulation output. The accompanying video shows the versatility and potential power of this new technique for synthesizing realtime complex fire at the quality comparable to production animations.

[1]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[2]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, SIGGRAPH 2004.

[3]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[4]  Christopher Horvath,et al.  Directable, high-resolution simulation of fire on the GPU , 2009, SIGGRAPH '09.

[5]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[6]  Yoshinori Dobashi,et al.  Modeling and rendering of various natural phenomena consisting of particles , 2001, Proceedings. Computer Graphics International 2001.

[7]  Richard Szeliski,et al.  Video textures , 2000, SIGGRAPH.

[8]  Frédéric H. Pighin,et al.  Modeling and editing flows using advected radial basis functions , 2004, SCA '04.

[9]  Ronald Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, SIGGRAPH 2010.

[10]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[11]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[12]  Ronald Fedkiw,et al.  Wrinkled flames and cellular patterns , 2007, SIGGRAPH 2007.

[13]  Kun Zhou,et al.  Motion field texture synthesis , 2009, SIGGRAPH 2009.

[14]  Soonhung Han,et al.  A data-driven visual simulation of fire phenomena , 2009, SIGGRAPH '09.

[15]  Mark J. Harris Real-time cloud simulation and rendering , 2005, SIGGRAPH Courses.

[16]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, ACM Trans. Graph..

[17]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[18]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[19]  Kun Zhou,et al.  Motion field texture synthesis , 2009, ACM Trans. Graph..

[20]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[21]  Enhua Wu,et al.  A particle-based method for viscoelastic fluids animation , 2009, VRST '09.

[22]  Yubo Zhang,et al.  Quartz: an autonomous navigation system for MOUT simulations , 2007 .

[23]  Derek Nowrouzezahrai,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) a Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation , 2022 .

[24]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[25]  Renato Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, ACM Trans. Graph..

[26]  Erik Reinhard,et al.  Real-time fluid simulation using discrete sine/cosine transforms , 2009, I3D '09.

[27]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[28]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[29]  T. Pfaff,et al.  Synthetic turbulence using artificial boundary layers , 2009, SIGGRAPH 2009.

[30]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[31]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[32]  Baining Guo,et al.  Real-time texture synthesis by patch-based sampling , 2001, TOGS.

[33]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, SIGGRAPH 2010.

[34]  Robert Bridson,et al.  Evolving sub-grid turbulence for smoke animation , 2008, SCA '08.

[35]  Doug L. James,et al.  Mesh Ensemble Motion Graphs: Data-driven mesh animation with constraints , 2007, TOGS.

[36]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[37]  Markus H. Gross,et al.  Wavelet turbulence for fluid simulation , 2008, ACM Trans. Graph..

[38]  Jessica K. Hodgins,et al.  Flow-based video synthesis and editing , 2004, SIGGRAPH 2004.

[39]  Yu-Chi Lai,et al.  Group motion graphs , 2005, SCA '05.

[40]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[41]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH 2008.

[42]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[43]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[44]  Luka Cindro,et al.  Real-time cloud simulation and rendering , 2013 .

[45]  Jos Starn A Simple Fluid Solver Based on the FFT , 2001, J. Graphics, GPU, & Game Tools.

[46]  Ronald Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, ACM Trans. Graph..