Post-fire restoration of historic buildings and implications for Notre-Dame de Paris

The restoration of fire-damaged historical monuments entails a wide range of scientific questions. Taking as a starting point the case of Notre-Dame de Paris, this Comment defines the materials science challenges of post-fire restoration, and also briefly outlines the issues of structural integrity, fire safety and preservation ethics.

[1]  Hannelore Römich,et al.  Consolidation of paint on stained glass windows: Comparative study and new approaches , 2009 .

[2]  Ioannis Stefanou,et al.  Structural integrity of Notre Dame Cathedral after the fire of April 15th, 2019 , 2019 .

[3]  J. Quintiere,et al.  Predicting the burning of wood using an integral model , 2000 .

[4]  Bernard J. Smith,et al.  A commentary on climate change, stone decay dynamics and the ‘greening’ of natural stone buildings: new perspectives on ‘deep wetting’ , 2011 .

[5]  Sandrine Bardet,et al.  Projet GreenWood : Utilisation du bois vert dans la construction : Effet du séchage sur les propriétés rhéologiques et hydriques , 2019 .

[6]  Mary B Shepard,et al.  The art of collaboration : stained-glass conservation in the twenty-first century = L'art de travailler ensemble = Die Kunst der Zusammenarbeit , 2010 .

[7]  N. Carmona,et al.  Characterisation of an intermediate decay phenomenon of historical glasses , 2006 .

[8]  Majid Hosseini,et al.  Advanced Materials for the Conservation of Stone , 2018 .

[9]  W. Walton,et al.  Estimating Temperatures in Compartment Fires , 2016 .

[10]  Ana Paula Ferreira Pinto,et al.  Challenges of Alkoxysilane-Based Consolidants for Carbonate Stones: From Neat TEOS to Multipurpose Hybrid Nanomaterials , 2018 .

[11]  Stefan M. Holzer Statische Beurteilung historischer Tragwerke: Band 1: Mauerwerkskonstruktionen , 2013 .

[12]  C. Gerhards Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects , 2007 .

[13]  Xavier Brunetaud,et al.  Non-destructive diagnosis by colorimetry of building stone subjected to high temperatures , 2016 .

[14]  Jean-Noël Rouzaud,et al.  A Raman – HRTEM study of the carbonization of wood: A new Raman-based paleothermometer dedicated to archaeometry , 2016 .

[15]  Egidijus Rytas Vaidogas,et al.  Reliability of a timber structure exposed to fire: estimation using fragility function , 2008 .

[16]  Robert J. Flatt,et al.  Chemo-mechanics of salt damage in stone , 2014, Nature Communications.

[17]  Birbhushan Chakrabarti,et al.  Effect of fire damage on natural stonework in buildings , 1996 .

[18]  J. Delgado Rodrigues,et al.  Indicators and ratings for the compatibility assessment of conservation actions , 2007 .

[19]  Gabriele Milani,et al.  Computational Methods for Masonry Vaults: A Review of Recent Results , 2014 .

[20]  Sasha Chapman,et al.  Literature Review: The Use of Paraloid B-72 as a Surface Consolidant for Stained Glass , 2003 .

[21]  Carlos Alberto Brebbia,et al.  Structural repair and maintenance of historical buildings , 1989 .

[22]  Robert J. Flatt,et al.  On-site monitoring for better selection of stone repairs: a case study , 2016, Heritage Science.

[23]  José L. Torero,et al.  Fire Safety of Historical Buildings: Principles and Methodological Approach , 2019, International Journal of Architectural Heritage.