A new fragment contribution‐corresponding states method for physicochemical properties prediction of ionic liquids

Ying HuangBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences,Beijing 100190, P.R. ChinaCollege of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences,Beijing 100049, P.R. ChinaHaifeng Dong, Xiangping Zhang, Chunshan Li, and Suojiang ZhangBeijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences,Beijing 100190, P.R. ChinaDOI 10.1002/aic.13910Published online in Wiley Online Library (wileyonlinelibrary.com).A new fragment contribution-corresponding states (FC—CS) method based on the group contribution method and thecorresponding states principle is developed to predict critical properties of ionic liquids (ILs). There are 46 fragmentsspecially classified for ILs considering the ionic features of ILs, and the corresponding fragment increments aredetermined using the experimental density data. The accuracy of the developed method is verified indirectly viapredicting density and surface tension of ILs. The results show that the FC—CS method is reasonable with an averageabsolute relative deviation less than 4%. With the calculated critical properties, corresponding states heat capacity(CSHC) and corresponding states thermal conductivity (CSTC) correlations are proposed to predict heat capacity andthermal conductivity of ILs, respectively. The predicted results agreed well with the experimental data. The proposedFC—CS method and the two corresponding states correlationsare important for design, simulation, and analysis of newionic liquid processes.

[1]  W. B. Whiting,et al.  A corresponding-states treatment for the viscosity of polar fluids , 1987 .

[2]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[3]  David Rooney,et al.  Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction , 2008 .

[4]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[5]  Mahmood Moshfeghian,et al.  A simplified method for calculating saturated liquid densities , 2004 .

[6]  José O. Valderrama,et al.  A simple and generalized model for predicting the density of ionic liquids , 2009 .

[7]  Frank Endres,et al.  Ionic liquids: solvents for the electrodeposition of metals and semiconductors. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  D. Armstrong,et al.  Ionic liquids in separations. , 2007, Accounts of chemical research.

[9]  Peter Licence,et al.  Comment on "Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids" , 2007 .

[10]  J. Shereshefsky,et al.  Surface Tension of Saturated Vapors and the Equation of Eötvös , 1930 .

[11]  Amyn S. Teja,et al.  A generalized corresponding-states method for the prediction of surface tension of pure liquids and liquid mixtures , 1982 .

[12]  H. Eslami Prediction of the density for natural gas and liquefied natural gas mixtures , 2001 .

[13]  Andreas Klamt,et al.  Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids. , 2007, Physical chemistry chemical physics : PCCP.

[14]  L. Riedel Die Flüssigkeitsdichte im Sättigungszustand. Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. Teil II , 1954 .

[15]  E. A. Guggenheim The Principle of Corresponding States , 1945 .

[16]  José S. Torrecilla,et al.  Effect of Cationic and Anionic Chain Lengths on Volumetric, Transport, and Surface Properties of 1-Alkyl-3-methylimidazolium Alkylsulfate Ionic Liquids at (298.15 and 313.15) K , 2009 .

[17]  R. Bird,et al.  Surface tension and the principle of corresponding states , 1955 .

[18]  J. Valderrama,et al.  Critical Properties of Ionic Liquids. Revisited , 2009 .

[19]  J. Torrecilla,et al.  Density and Molar Volume Predictions Using COSMO-RS for Ionic Liquids. An Approach to Solvent Design , 2007 .

[20]  A. Leipertz,et al.  Viscosity, Interfacial Tension, Self-Diffusion Coefficient, Density, and Refractive Index of the Ionic Liquid 1-Ethyl-3-methylimidazolium Tetracyanoborate as a Function of Temperature at Atmospheric Pressure , 2012 .

[21]  Kamil Paduszyński,et al.  A New Group Contribution Method For Prediction of Density of Pure Ionic Liquids over a Wide Range of Temperature and Pressure , 2012 .

[22]  Peter Wasserscheid,et al.  Thermal Conductivity of Ionic Liquids: Measurement and Prediction , 2010 .

[23]  J. Valderrama,et al.  Generalized rackett-type correlations to predict the density of saturated liquids and petroleum fractions , 1989 .

[24]  B. Han,et al.  The physicochemical properties of some imidazolium-based ionic liquids and their binary mixtures , 2012, Science China Chemistry.

[25]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[26]  M. Mousazadeh,et al.  Corresponding states theory for the prediction of surface tension of ionic liquids , 2011 .

[27]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[28]  F. Müller-Plathe,et al.  Critical Parameters and Surface Tension of the Room Temperature Ionic Liquid [bmim][PF₆]: A Corresponding-States Analysis of Experimental and New Simulation Data , 2010 .

[29]  B. Saramago,et al.  Surface tension of ionic liquids and ionic liquid solutions. , 2012, Chemical Society reviews.

[30]  João A. P. Coutinho,et al.  Group Contribution Methods for the Prediction of Thermophysical and Transport Properties of Ionic Liquids , 2009 .

[31]  A. Nagashima,et al.  Corresponding states correlation for the thermal conductivity of molten alkali halides , 1993 .

[32]  R. D. Gunn,et al.  saturated liquid molar volumes. Rackett equation , 1973 .

[33]  W. Henderson,et al.  Tuning Binary Ionic Liquid Mixtures: Linking Alkyl Chain Length to Phase Behavior and Ionic Conductivity , 2012 .

[34]  Prem K. Kilaru,et al.  Density and Surface Tension Measurements of Imidazolium-, Quaternary Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids: Data and Correlations , 2007 .

[35]  F. A. Amaral,et al.  Evidence of change in the molecular organization of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water , 2008 .

[36]  Chunxi Li,et al.  Estimation of densities of ionic liquids using Patel-Teja equation of state and critical properties determined from group contribution method , 2011 .

[37]  Johan Jacquemin,et al.  Density and viscosity of several pure and water-saturated ionic liquids , 2006 .

[38]  João A. P. Coutinho,et al.  Surface tension of pure heavy n-alkanes: a corresponding states approach , 2001 .

[39]  J. Troncoso,et al.  Excess Magnitudes for Ionic Liquid Binary Mixtures with a Common Ion , 2007 .

[40]  Hongyan He,et al.  Prediction of the melting points for two kinds of room temperature ionic liquids , 2006 .

[41]  B. B. Sauer,et al.  The surface tension of polymer liquids , 1998 .

[42]  J. Valderrama,et al.  Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids , 2007 .

[43]  Suojiang Zhang,et al.  Ionic Liquids: Physicochemical Properties , 2009 .

[44]  M. Ghatee,et al.  Critical-Point Temperature of Ionic Liquids from Surface Tension at Liquid—Vapor Equilibrium and the Correlation with the Interaction Energy , 2010 .

[45]  Sukbae Lee,et al.  A Corresponding State Theory for the Viscosity of Liquids , 2008 .

[46]  Jing Yang,et al.  Physicochemical properties of nitrile-functionalized ionic liquids. , 2007, The journal of physical chemistry. B.

[47]  Eduardo Filipe,et al.  On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. , 2005, The journal of physical chemistry. B.

[48]  M. Hansen,et al.  Corresponding-states data correlations and molten salts viscosities , 1989 .

[49]  V. Weiss Guggenheim's rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids. , 2010, The journal of physical chemistry. B.

[50]  D. Rooney,et al.  An investigation of the radiochemical stability of ionic liquids , 2002 .

[51]  R. Pachter,et al.  Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Liquids , 2005 .

[52]  H. Guerrero,et al.  Volumetric characterization of pyridinium-based ionic liquids , 2012 .

[53]  G. Mansoori,et al.  Surface‐tension prediction for liquid mixtures , 1998, 1802.01648.

[54]  Zhen Yang,et al.  Ionic liquids: Green solvents for nonaqueous biocatalysis , 2005 .

[55]  S. Pandey Analytical applications of room-temperature ionic liquids: a review of recent efforts. , 2006, Analytica chimica acta.