Tackling the challenges in modelling entrained-flow gasification of low-grade feedstock

Abstract Development of a new technology for conversion of residual biomass into a liquid fuel via pyrolysis–gasification–gas cleaning–synthesis is the overall objective of the on-going bioliq ® project. The present paper gives an overview on research activities dedicated to mathematical modelling of entrained-flow gasification for conversion of biomass-based suspension fuels into a medium calorific (LCV around 15 MJ/kg) synthesis gas. The objective is to identify knowledge gaps that currently prohibit a knowledge-based mathematical description of reacting high-pressure multi-phase flows so as to model the bioliq ® gasification reactor in particular and biomass conversion in entrained flow gasifiers in general. Substantial knowledge gaps for high pressure process conditions have been identified for atomization of high viscous liquids, gasification chemistry for biomass-based fuels, radiative heat transfer as well as slag formation mechanisms. The paper proposes an interdisciplinary research approach in a holistic manner to close these gaps.

[1]  Thomas H. Fletcher,et al.  CO2 Gasification Rates of Petroleum Coke in a Pressurized Flat-Flame Burner Entrained-Flow Reactor , 2014 .

[2]  Vadim Evseev,et al.  High-resolution transmission measurements of CO2 at high temperatures for industrial applications , 2012 .

[3]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[4]  B. M. Gibbs,et al.  Gasification kinetics of an Indonesian sub-bituminous coal-char with CO2 at elevated pressure , 2001 .

[5]  Hartmut Spliethoff,et al.  Gasification kinetics during entrained flow gasification – Part II: Intrinsic char reaction rate and surface area development , 2013 .

[6]  Arthur H. Lefebvre,et al.  Spray Characteristics of Plain-Jet Airblast Atomizers , 1983 .

[7]  Lorenz Singheiser,et al.  Untersuchungen zur Alkalireinigung von Heißgasen für Anlagen mit Kohlenstaub-Druckfeuerung , 2003 .

[8]  Bernd Meyer,et al.  Behaviour of heavy metals in the partial oxidation of heavy fuel oil , 2010 .

[9]  Elena Yazhenskikh,et al.  A Novel Thermodynamic Database for Slag Systems and Refractory Materials , 2012 .

[10]  Michael Beckmann,et al.  Considerations on providing the energy needs using exclusively renewable sources: Energiewende in Germany , 2014 .

[11]  Hejiu Hui,et al.  Viscosity of Silicate Melts. , 2008 .

[12]  Normand M. Laurendeau,et al.  Heterogeneous Kinetics of Coal Char Gasification and Combustion , 1979 .

[13]  Sudarshan P. Bharadwaj,et al.  Medium Resolution Transmission Measurements of Water Vapor at High Temperature , 2006 .

[14]  Manfred Aigner,et al.  Unsteady simulation of liquid jet atomization in cross-flow at gas turbine conditions , 2011 .

[15]  Muhammad Usman,et al.  Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review , 2011 .

[16]  Theodore M. Besmann,et al.  Thermochemical Modeling of Oxide Glasses , 2004 .

[17]  D. G. Roberts,et al.  Char Gasification with O2, CO2, and H2O: Effects of Pressure on Intrinsic Reaction Kinetics , 2000 .

[18]  A. H. Lefebvre,et al.  Plain-Jet Airblast Atomization of Coal-Water Slurry Fuels , 1985 .

[19]  Marco Mancini,et al.  The bioliq entrained flow gasifier for biomass based slurry design and operation , 2013 .

[20]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[21]  Wolfgang Leuckel,et al.  Design of the entrained flow reactor for gasification of biomass based slurry , 2013 .

[22]  Rainer Lückerath,et al.  Experimental Investigations of Flame Stabilization of a Gas Turbine Combustor , 2011 .

[23]  Thomas Kolb,et al.  BtL - The bioliq process , 2013 .

[24]  W. P. Jones,et al.  Global reaction schemes for hydrocarbon combustion , 1988 .

[25]  G. Aranda,et al.  Effect of steam content in the air–steam flow on biomass entrained flow gasification , 2012 .

[26]  Hartmut Spliethoff,et al.  Validation of spectral gas radiation models under oxyfuel conditions - Part C: Validation of simplified models , 2012 .

[27]  Manfred Aigner,et al.  FLOX® Combustion at High Pressure With Different Fuel Compositions , 2007 .

[28]  J. M. Beer,et al.  Secondary atomization of coal-water fuels for gas turbine applications: Final report , 1988 .

[29]  Rikard Gebart,et al.  Numerical modeling of counter-current condensation in a Black Liquor Gasification plant , 2013 .

[30]  Uwe Riedel,et al.  A detailed chemical kinetic model of high-temperature ethylene glycol gasification , 2011 .

[31]  Behdad Moghtaderi,et al.  Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity , 2005 .

[32]  C. Westbrook,et al.  Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , 1981 .

[33]  Kevin J. Whitty,et al.  Physical phenomena of char–slag transition in pulverized coal gasification , 2012 .

[34]  Ronald K. Hanson,et al.  TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier , 2013 .

[35]  Roman Weber,et al.  Re-creating Hottel’s emissivity charts for water vapor and extending them to 40 bar pressure using HITEMP-2010 data base , 2015 .

[36]  N SayreA,et al.  Yジェットアトマイザーによる半工業的規模の燃料油噴霧の特性 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1994 .

[37]  K. Dam-Johansen,et al.  Rheological properties of high-temperature melts of coal ashes and other silicates , 2001 .

[38]  T. Nentwig,et al.  Experimentelle Bestimmung und numerische Simulation von Viskositäten in Schlackesystemen unter Vergasungsbedingungen , 2011 .

[39]  Roman Weber,et al.  Gasification of high viscous slurry R&D on atomization and numerical simulation , 2012 .

[40]  Bo G Leckner,et al.  Spectral and total emissivity of water vapor and carbon dioxide , 1972 .

[41]  Peter Gerlinger,et al.  Numerical Simulations of Confined, Turbulent, Lean, Premixed Flames Using a Detailed Chemistry Combustion Model , 2011 .

[42]  Christoph Hassa,et al.  Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure , 2007 .

[43]  Hartmut Spliethoff,et al.  Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments , 2011 .

[44]  Arthur Pelton,et al.  A MODEL AND DATABASE FOR THE VISCOSITY OF MOLTEN SLAGS , 2009 .

[45]  Colomba Di Blasi,et al.  Combustion and gasification rates of lignocellulosic chars , 2009 .

[46]  Roman Weber,et al.  Computing of Oxy-Natural Gas Flames using Both a Global Combustion Scheme and a Chemical Equilibrium Procedure , 2000 .

[47]  G. Worringer,et al.  Ermittlung des Rußumsatzes unter Flugstromvergasungsbedingungen , 2011 .

[48]  Roman Weber,et al.  Evaluation of emissivity correlations for H2OCO2N2/air mixtures and coupling with solution methods of the radiative transfer equation , 1996 .

[49]  Ahmed F. Ghoniem,et al.  Large eddy simulations of coal gasification in an entrained flow gasifier , 2013 .

[50]  D. Wilcox Turbulence modeling for CFD , 1993 .

[51]  Hiromitsu Matsuda,et al.  Gasification rate analysis of coal char with a pressurized drop tube furnace , 2002 .

[52]  Elena Yazhenskikh,et al.  Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags, Part 5: Potassi , 2011 .

[53]  Patrick Le Clercq,et al.  Numerical Simulations of Unsteady, Multi-Phase Flows in Aero-Engine like Combustors , 2011 .

[54]  Manfred Aigner,et al.  Investigation of Soot Formation and Oxidation in a High-Pressure Gas Turbine Model Combustor by Laser Techniques , 2007 .

[55]  Hartmut Spliethoff,et al.  Experimental investigation of high temperature and high pressure coal gasification , 2012 .

[56]  Koichi Matsuoka,et al.  The physical character of coal char formed during rapid pyrolysis at high pressure , 2005 .

[57]  Bjørn F. Magnussen,et al.  A Numerical Study of a Bluff-Body Stabilized Diffusion Flame. Part 2. Influence of Combustion Modeling And Finite-Rate Chemistry , 1996 .

[58]  Tomasz Chmielniak,et al.  Pressurized CO2-enhanced gasification of coal , 2014, Journal of Thermal Analysis and Calorimetry.

[59]  Henry Hedman,et al.  Pressurized oxygen blown entrained flow gasification of a biorefinery lignin residue , 2013 .

[60]  Roman Weber,et al.  Mathematical modeling of MILD combustion of pulverized coal , 2009 .

[61]  Keigo Matsumoto,et al.  Gasification of oil palm residues (empty fruit bunch) in an entrained-flow gasifier , 2013 .

[62]  Roman Weber,et al.  Combustion of biomass in jet flames , 2015 .

[63]  Josette Bellan,et al.  Direct numerical simulation of a transitional temporal mixing layer laden with multicomponent-fuel evaporating drops using continuous thermodynamics , 2004 .

[64]  B. Magnussen On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow , 1981 .

[65]  Rikard Gebart,et al.  Pressurized Oxygen Blown Entrained-Flow Gasification of Wood Powder , 2013 .

[66]  D. K. Edwards,et al.  Molecular Gas Band Radiation , 1976 .

[67]  Roman Weber,et al.  Comparison of models for predicting band emissivity of carbon dioxide and water vapour at high temperatures , 2013 .

[68]  A. Balakrishnan,et al.  Thermal radiation by combustion gases , 1973 .

[69]  Klaus Peter Geigle,et al.  Soot formation and flame characterization of an aero-engine model combustor at elevated pressure , 2013 .

[70]  Sudarshan P. Bharadwaj,et al.  Medium resolution transmission measurements of CO2 at high temperature—an update , 2007 .

[71]  John Lucas,et al.  The effects of pressure on coal reactions during pulverised coal combustion and gasification , 2002 .

[72]  Nikolaos Zarzalis,et al.  Influence of ambient pressure on twin fluid atomization R&D work for high pressure entrained flow gasification , 2012 .

[73]  A. Bula,et al.  Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time , 2010 .

[74]  Manfred Aigner,et al.  Development of a Projection-Based Method for the Numerical Calculation of Compressible Reactive Flows , 2013 .

[75]  Bo G Leckner The spectral and total emissivity of carbon dioxide , 1971 .

[76]  N. Chigier,et al.  Air-blast atomization of non-Newtonian liquids , 1995 .

[77]  W. Grosshandler Radcal: A Narrow-Band Model for Radiation Calculations in a Combustion Environment , 2018 .

[78]  H. R. Shaw Viscosities of magmatic silicate liquids; an empirical method of prediction , 1972 .

[79]  Manfred Aigner,et al.  A Numerical Study on the Turbulent Schmidt Numbers in a Jet in Crossflow , 2012 .

[80]  Emil J. Hopfinger,et al.  Break-up and atomization of a round water jet by a high-speed annular air jet , 1998, Journal of Fluid Mechanics.

[81]  Rosa Peter,et al.  Thermochemische Untersuchungen zum Einfluss der Erdalkalien in oxidischen Schlacken , 2013 .

[82]  Roman Weber,et al.  A computationally efficient procedure for calculating gas radiative properties using the exponential wide band model , 1996 .

[83]  A. Lefebvre Atomization and Sprays , 1988 .

[84]  Rikard Gebart,et al.  Experimental investigation of an industrial scale black liquor gasifier. 1. The effect of reactor operation parameters on product gas composition , 2010 .

[85]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[86]  Wolfgang Meier,et al.  Development of a laser-induced plasma probe to measure gas phase plasma signals at high pressures and temperatures , 2012 .

[87]  Nicolaus Dahmen,et al.  BtL - The bioloiq process at KIT , 2013 .

[88]  Roman Weber,et al.  Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range , 2015 .

[89]  Nicolaus Dahmen,et al.  State of the art of the bioliq® process for synthetic biofuels production , 2012 .