A Parallel Multiscale Simulation Toolbox for Coupling Molecular Dynamics and Finite Elements

It is the ultimate goal of concurrent multiscale methods to provide computational tools that allow to simulation physical processes with the accuracy of micro-scale and the computational speed of macro-scale models. As a matter of fact, the efficient and scalable implementation of concurrent multiscale methods on clusters and supercomputers is a complicated endeavor. In this article we present the parallel multiscale simulation tool Maci which has been designed for efficient coupling between molecular dynamics and finite element codes. We propose a specification for a thin yet versatile interface for the coupling of molecular dynamics and finite element codes in a modular fashion. Further we discuss the parallelization strategy pursued in Maci, in particular, focusing on the parallel assembly of transfer operators and their efficient execution.

[1]  Richard D. Hornung,et al.  Multiscale simulation using Generalized Interpolation Material Point (GIMP) method and Molecular Dynamics (MD) , 2006 .

[2]  Michael Griebel,et al.  Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .

[3]  Rolf Krause,et al.  Parallel Scale-Transfer in Multiscale MD-FE Coupling Using Remote Memory Access , 2011, 2011 IEEE Seventh International Conference on e-Science Workshops.

[4]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[5]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[6]  Sebastian Volz,et al.  A Special Issue on Nanoscale Heat Transfer , 2008 .

[7]  Christoph Lenzen,et al.  Coupling Molecular Dynamics and Continua with Weak Constraints , 2011, Multiscale Model. Simul..

[8]  Olivier Coulaud,et al.  High performance multiscale simulation or crack propagation , 2006, 2006 International Conference on Parallel Processing Workshops (ICPPW'06).

[9]  Scott R. Kohn,et al.  Toward a Common Component Architecture for High-Performance Scientific Computing , 1999, HPDC.

[10]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[11]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[12]  R. Krause,et al.  Multiscale coupling in function space—weak coupling between molecular dynamics and continuum mechanics , 2009 .

[13]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[14]  Shaowen Wang,et al.  The Bridging Domain Multiscale Method and Its High Performance Computing Implementation , 2008 .

[15]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[16]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[17]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[18]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[19]  David M. Beazley,et al.  SWIG: An Easy to Use Tool for Integrating Scripting Languages with C and C++ , 1996, Tcl/Tk Workshop.

[20]  Scott R. Kohn,et al.  Language Interoperability for High-Performance Parallel Scientific Components , 1999, ISCOPE.

[21]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[22]  Rolf Krause,et al.  Numerical validation of a constraints-based multiscale simulation method for solids , 2011 .

[23]  Rolf Krause,et al.  Numerical Validation of Constraints Based Multiscale Methods , 2010 .

[24]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[25]  Marc Alexander Schweitzer,et al.  A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations , 2003, Lecture Notes in Computational Science and Engineering.

[26]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[27]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.