Multilevel Codes in Lattice-Reduction-Aided Decision-Feedback Equalization

The application of multilevel codes in lattice-reduction-aided (LRA) decision-feedback equalization (DFE) is discussed. There, integer linear combinations of the codewords in signal space have to be decoded. Since multilevel codes do not generate lattices in general and non-integer interference of not yet decoded users is present, straightforward decoding is not possible. A generalized version of multistage decoding adapted to LRA DFE is proposed. Thereby, multilevel constructions using stateof-the-art binary channel codes can be used, which makes coded LRA DFE schemes applicable in practice. The performance of the proposed structure is covered via numerical simulations.

[1]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[2]  Robert F. H. Fischer,et al.  Optimal Factorization in Lattice-Reduction-Aided and Integer-Forcing Linear Equalization , 2016 .

[3]  Cheol Jeong,et al.  Multilevel Coding Scheme for Integer-Forcing MIMO Receivers With Binary Codes , 2017, IEEE Transactions on Wireless Communications.

[4]  A. Korkine,et al.  Sur les formes quadratiques , 1873 .

[5]  Michael Gastpar,et al.  Compute-and-Forward: Harnessing Interference Through Structured Codes , 2009, IEEE Transactions on Information Theory.

[6]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[7]  Andreas Schenk,et al.  Lattice-Reduction-Aided MMSE Equalization and the Successive Estimation of Correlated Data , 2011 .

[8]  Robert F. H. Fischer,et al.  Factorization Approaches in Lattice-Reduction-Aided and Integer-Forcing Equalization , 2016 .

[9]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[10]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[11]  Frédérique E. Oggier,et al.  Connections between Construction D and related constructions of lattices , 2013, Des. Codes Cryptogr..

[12]  Robert F. H. Fischer,et al.  Multilevel Codes in Lattice-Reduction-Aided Equalization , 2018 .

[13]  Gregory W. Wornell,et al.  Lattice-reduction-aided detectors for MIMO communication systems , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[14]  Robert F. H. Fischer,et al.  Low-complexity near-maximum-likelihood detection and precoding for MIMO systems using lattice reduction , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[15]  Uri Erez,et al.  Successive integer-forcing and its sum-rate optimality , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[16]  Yuval Kochman,et al.  Lattice Coding for Signals and Networks: Modulo-lattice modulation , 2014 .

[17]  Robert F. H. Fischer,et al.  V-BLAST in lattice reduction and integer forcing , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[18]  Robert F. H. Fischer,et al.  Precoding and Signal Shaping for Digital Transmission , 2002 .

[19]  Robert F. H. Fischer,et al.  Lattice-Reduction-Aided and Integer-Forcing Equalization: Structures, Criteria, Factorization, and Coding , 2019, Found. Trends Commun. Inf. Theory.

[20]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[21]  Michael Gastpar,et al.  Integer-forcing linear receivers , 2010, 2010 IEEE International Symposium on Information Theory.