Stochastic Simulations of Pattern Formation in Excitable Media

We present a method for mesoscopic, dynamic Monte Carlo simulations of pattern formation in excitable reaction–diffusion systems. Using a two-level parallelization approach, our simulations cover the whole range of the parameter space, from the noise-dominated low-particle number regime to the quasi-deterministic high-particle number limit. Three qualitatively different case studies are performed that stand exemplary for the wide variety of excitable systems. We present mesoscopic stochastic simulations of the Gray-Scott model, of a simplified model for intracellular Ca oscillations and, for the first time, of the Oregonator model. We achieve simulations with up to particles. The software and the model files are freely available and researchers can use the models to reproduce our results or adapt and refine them for further exploration.

[1]  L. Kuhnert,et al.  A new optical photochemical memory device in a light-sensitive chemical active medium , 1986, Nature.

[2]  M. Or-Guil,et al.  Mechanism for spiral wave breakup in excitable and oscillatory media. , 2004, Physical review letters.

[3]  D. Gillespie The chemical Langevin equation , 2000 .

[4]  M. Falcke Introduction to focus issue: intracellular Ca2+ dynamics--a change of modeling paradigm? , 2009, Chaos.

[5]  Srinivas Devadas,et al.  Efficient stochastic simulation of reaction–diffusion processes via direct compilation , 2009, Bioinform..

[6]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[7]  P. Jung,et al.  Thermal Waves, Criticality, and Self-Organization in Excitable Media , 1997 .

[8]  Aiguo Xu,et al.  Spiral waves in excitable media due to noise and periodic forcing , 2011 .

[9]  H. Othmer,et al.  Frequency encoding in excitable systems with applications to calcium oscillations. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  C. Lumsden,et al.  Stochastic Simulation of Coupled Reaction-Diffusion Processes , 1996 .

[11]  W. E,et al.  Noise can play an organizing role for the recurrent dynamics in excitable media , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. M. Sancho,et al.  Excitability transitions and wave dynamics under spatiotemporal structured noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  G. Solovey,et al.  Observable effects of Ca2+ buffers on local Ca2+ signals , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[15]  Albert Goldbeter,et al.  From Simple to Complex Ca 2+ Oscillations: Regulatory Mechanisms and Theoretical Models , 2003 .

[16]  Ben J Hicks,et al.  SPIE - The International Society for Optical Engineering , 2001 .

[17]  Lutz Schimansky-Geier,et al.  Noise-Sustained Pulsating Patterns and Global Oscillations in Subexcitable Media , 1999 .

[18]  Yubing Gong,et al.  Non-Gaussian noise- and system-size-induced coherence resonance of calcium oscillations in an array of coupled cells , 2011 .

[19]  Sungrim Seirin-Lee,et al.  Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  A. Winfree Erratum: Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media [CHAOS 1, 303-334 (1991)]. , 1992, Chaos.

[21]  Casademunt,et al.  Brownian motion of spiral waves driven by spatiotemporal structured noise , 2000, Physical review letters.

[22]  H. Engel,et al.  Efficient control of spiral wave location in an excitable medium with localized heterogeneities , 2008 .

[23]  Q Ouyang,et al.  Experimental and numerical studies of noise-induced coherent patterns in a subexcitable system. , 2002, Physical review letters.

[24]  P. Camacho,et al.  Ca2+ wave dispersion and spiral wave entrainment in Xenopus laevis oocytes overexpressing Ca2+ ATPases. , 1998, Biophysical Chemistry.

[25]  Matjaž Perc,et al.  Periodic calcium waves in coupled cells induced by internal noise , 2007 .

[26]  Matjaz Perc,et al.  Spatial coherence resonance in excitable biochemical media induced by internal noise. , 2007, Biophysical chemistry.

[27]  Bastien Chopard,et al.  Multiparticle Lattice Gas Automata For Reaction Diffusion Systems , 1994 .

[28]  S. Dawson Observable effects of Ca 2 + buffers on local Ca 2 + signals , 2010 .

[29]  Quan Liu,et al.  A mesoscopic stochastic mechanism of cytosolic calcium oscillations. , 2007, Biophysical chemistry.

[30]  K. Showalter,et al.  Noise-supported travelling waves in sub-excitable media , 1998, Nature.

[31]  J. M. Sancho,et al.  Spatiotemporal order out of noise , 2007 .

[32]  Q Ouyang,et al.  Transition from spirals to defect-mediated turbulence driven by a doppler instability. , 2000, Physical review letters.

[33]  Theory of spike spiral waves in a reaction-diffusion system. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[35]  W. Hongli,et al.  Stochastic Simulation of Turing Patterns , 2008 .

[36]  H G Othmer,et al.  Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. , 1996, Biophysical journal.

[37]  Ursula Kummer,et al.  Transition from stochastic to deterministic behavior in calcium oscillations. , 2005, Biophysical journal.

[38]  Hong Li,et al.  Efficient Parallelization of the Stochastic Simulation Algorithm for Chemically Reacting Systems On the Graphics Processing Unit , 2010, Int. J. High Perform. Comput. Appl..

[39]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[40]  Martin Falcke,et al.  On the role of stochastic channel behavior in intracellular Ca2+ dynamics. , 2003, Biophysical journal.

[41]  Eleazar Eskin,et al.  Mixed-model coexpression: calculating gene coexpression while accounting for expression heterogeneity , 2011, Bioinform..

[42]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[43]  J. Keizer,et al.  A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[45]  Martin Falcke,et al.  Deterministic and stochastic models of intracellular Ca2+ waves , 2003 .

[46]  Jaap A. Kaandorp,et al.  Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli , 2006, Bioinform..

[47]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[48]  Paul J. Atzberger,et al.  Spatially adaptive stochastic numerical methods for intrinsic fluctuations in reaction-diffusion systems , 2010, J. Comput. Phys..

[49]  A. Winfree Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media. , 1991, Chaos.

[50]  Gottfried Mayer-Kress,et al.  Noise controlled spiral growth in excitable media. , 1995, Chaos.

[51]  S. Swillens,et al.  Stochastic simulation of a single inositol 1,4,5-trisphosphate-sensitive Ca2+ channel reveals repetitive openings during 'blip-like' Ca2+ transients. , 1998, Cell calcium.

[52]  James Sneyd,et al.  A dynamic model of the type-2 inositol trisphosphate receptor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Radek Erban,et al.  STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB , 2011, Bioinform..

[54]  W. Skaggs,et al.  Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable oregonator model , 1989 .

[55]  P. Maini,et al.  A practical guide to stochastic simulations of reaction-diffusion processes , 2007, 0704.1908.

[56]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[57]  Kenneth Showalter,et al.  Control of waves, patterns and turbulence in chemical systems , 2006 .

[58]  D. Clapham,et al.  Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. , 1991, Science.

[59]  David Bernstein,et al.  Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Stephen K. Scott,et al.  Oscillations, waves, and chaos in chemical kinetics , 1994 .

[61]  Elaine S. Oran,et al.  CHEMEQ2: A Solver for the Stiff Ordinary Differential Equations of Chemical Kinetics , 2001 .

[62]  D. Fanelli,et al.  Stochastic Turing patterns in the Brusselator model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  H. Engel,et al.  Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities. , 1994, Chaos.

[64]  Ian Parker,et al.  Buffer Kinetics Shape the Spatiotemporal Patterns of IP3‐Evoked Ca2+ Signals , 2003, The Journal of physiology.

[65]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[66]  D. Barkley A model for fast computer simulation of waves in excitable media , 1991 .

[67]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[68]  Måns Ehrenberg,et al.  Mesoscopic reaction-diffusion in intracellular signaling , 2003, SPIE International Symposium on Fluctuations and Noise.

[69]  Weiming Wang,et al.  Numerical study of pattern formation in an extended Gray–Scott model , 2011 .

[70]  J. M. Sancho,et al.  Regular wave propagation out of noise in chemical active media. , 2001, Physical review letters.

[71]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[72]  P. Maini,et al.  Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Fen-Ni Si,et al.  Propagation of travelling waves in sub-excitable systems driven by noise and periodic forcing , 2007, 0706.1917.

[74]  Jia Ya,et al.  Breakup of Spiral Waves in Coupled Hindmarsh–Rose Neurons , 2008 .

[75]  J Kurths,et al.  Noise-induced excitability in oscillatory media. , 2003, Physical review letters.

[76]  Erik Glatt,et al.  Variability-sustained pattern formation in subexcitable media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Sotiria Lampoudi,et al.  The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems. , 2009, The Journal of chemical physics.

[78]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[79]  N. Green,et al.  The Mechanism of Ca2+ Transport by Sarco(Endo)plasmic Reticulum Ca2+-ATPases* , 1997, The Journal of Biological Chemistry.

[80]  Anna T. Lawniczak,et al.  Lattice gas automata for reactive systems , 1995, comp-gas/9512001.

[81]  Erik Mosekilde,et al.  Pattern formation in the bistable Gray-Scott model , 1996 .

[82]  Bernd Meyer,et al.  Accelerating reaction-diffusion simulations with general-purpose graphics processing units , 2011, Bioinform..

[83]  Hongli Wang,et al.  Pattern formation induced by internal microscopic fluctuations. , 2007, The journal of physical chemistry. A.

[84]  T. Amemiya,et al.  Photoexcited chemical wave in the ruthenium-catalyzed Belousov-Zhabotinsky reaction. , 2011, The journal of physical chemistry. A.

[85]  Kenneth Showalter,et al.  Noise Driven Avalanche Behavior in Subexcitable Media , 1999 .

[86]  Spatiotemporal patterns driven by autocatalytic internal reaction noise. , 2005, The Journal of chemical physics.

[87]  P. Gray,et al.  Sustained oscillations and other exotic patterns of behavior in isothermal reactions , 1985 .

[88]  J. Keener Stochastic calcium oscillations. , 2006, Mathematical medicine and biology : a journal of the IMA.

[89]  Lutz Schimansky-Geier,et al.  Noise-induced spiral dynamics in excitable media , 1999 .

[90]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[91]  A. Atri,et al.  A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. , 1993, Biophysical journal.

[92]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[93]  欧阳颀,et al.  Stochastic Simulation of Turing Patterns , 2008 .

[94]  Matthias Vigelius,et al.  Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units , 2012, PloS one.

[95]  Francesc Sagués,et al.  Nonlinear chemical dynamics , 2003 .

[96]  P. Koumoutsakos,et al.  Particle simulations of morphogenesis , 2011 .

[97]  I. Parker,et al.  Modulation of Endoplasmic Reticulum Ca2+ Store Filling by Cyclic ADP-ribose Promotes Inositol Trisphosphate (IP3)-evoked Ca2+ Signals* , 2010, The Journal of Biological Chemistry.

[98]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[99]  Ian Parker,et al.  Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations , 2001 .

[100]  M. Falcke Reading the patterns in living cells —the physics of ca2+ signaling , 2004 .

[101]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .