Gillespie’s questions and Grothendieck duality

[1]  S. Estrada,et al.  Acyclic Complexes and Gorenstein Rings , 2020, 2001.06480.

[2]  Bo Lu,et al.  Gorenstein cohomology of N-complexes , 2020, Journal of Algebra and Its Applications.

[3]  S. Estrada,et al.  Characterizations of Ding Injective Complexes , 2020, Bulletin of the Malaysian Mathematical Sciences Society.

[4]  Liu Zhongkui,et al.  A negative answer to a question of Gillespie , 2018, SCIENTIA SINICA Mathematica.

[5]  James Gillespie AC-GORENSTEIN RINGS AND THEIR STABLE MODULE CATEGORIES , 2017, Journal of the Australian Mathematical Society.

[6]  S. Estrada,et al.  The projective stable category of a coherent scheme , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  James Gillespie On the homotopy category of AC-injective complexes , 2017 .

[8]  I. Emmanouil On pure acyclic complexes , 2016 .

[9]  James Gillespie On Ding injective, Ding projective, and Ding flat modules and complexes , 2015, 1512.05999.

[10]  James Gillespie Models for homotopy categories of injectives and Gorenstein injectives , 2015, 1502.05530.

[11]  J. Šťovíček On purity and applications to coderived and singularity categories , 2014, 1412.1615.

[12]  D. Bravo,et al.  Absolutely Clean, Level, and Gorenstein AC-Injective Complexes , 2014, 1408.7089.

[13]  Mark Hovey,et al.  The stable module category of a general ring , 2014, 1405.5768.

[14]  Zhongkui Liu,et al.  Model Structures on Categories of Complexes Over Ding-Chen Rings , 2013 .

[15]  I. Emmanouil On the finiteness of Gorenstein homological dimensions , 2012 .

[16]  James Gillespie Gorenstein complexes and recollements from cotorsion pairs , 2012, 1210.0196.

[17]  Xiaoyan Yang,et al.  Gorenstein Projective, Injective, and Flat Complexes , 2011 .

[18]  Pu Zhang,et al.  Gorenstein derived categories , 2010 .

[19]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[20]  James Gillespie Model structures on modules over Ding-Chen rings , 2009, 0910.1942.

[21]  Yuanlin Li,et al.  STRONGLY GORENSTEIN FLAT MODULES , 2009, Journal of the Australian Mathematical Society.

[22]  Liu Zhongkui,et al.  Gorenstein injective complexes of modules over Noetherian rings , 2009 .

[23]  Xiao-Wu Chen Homotopy Equivalences induced by Balanced Pairs , 2008, 0812.0140.

[24]  Xiaoyan Yang,et al.  Strongly Gorenstein projective, injective and flat modules , 2008 .

[25]  A. Neeman The homotopy category of flat modules, and Grothendieck duality , 2008 .

[26]  Nanqing Ding,et al.  GORENSTEIN FP-INJECTIVE AND GORENSTEIN FLAT MODULES , 2008 .

[27]  D. Bennis,et al.  Rings Over Which the Class of Gorenstein Flat Modules is Closed Under Extensions , 2008, 0801.1183.

[28]  Daniel Murfet The mock homotopy category of projectives and Grothendieck duality , 2007 .

[29]  N. Mahdou,et al.  Strongly Gorenstein projective, injective, and flat modules , 2006, math/0606770.

[30]  H. Krause,et al.  Acyclicity versus total acyclicity for complexes over noetherian rings , 2005, Documenta Mathematica.

[31]  H. Krause the stable derived category of a noetherian scheme , 2004, Compositio Mathematica.

[32]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[33]  James Gillespie The flat model structure on () , 2004 .

[34]  Peter Jørgensen The homotopy category of complexes of projective modules , 2003, math/0312088.

[35]  Amnon Neeman,et al.  The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .

[36]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[37]  A. Neeman The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , 1992 .

[38]  J. Kuzmanovich,et al.  On the global dimension of fibre products. , 1988 .