Gillespie’s questions and Grothendieck duality
暂无分享,去创建一个
[1] S. Estrada,et al. Acyclic Complexes and Gorenstein Rings , 2020, 2001.06480.
[2] Bo Lu,et al. Gorenstein cohomology of N-complexes , 2020, Journal of Algebra and Its Applications.
[3] S. Estrada,et al. Characterizations of Ding Injective Complexes , 2020, Bulletin of the Malaysian Mathematical Sciences Society.
[4] Liu Zhongkui,et al. A negative answer to a question of Gillespie , 2018, SCIENTIA SINICA Mathematica.
[5] James Gillespie. AC-GORENSTEIN RINGS AND THEIR STABLE MODULE CATEGORIES , 2017, Journal of the Australian Mathematical Society.
[6] S. Estrada,et al. The projective stable category of a coherent scheme , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[7] James Gillespie. On the homotopy category of AC-injective complexes , 2017 .
[8] I. Emmanouil. On pure acyclic complexes , 2016 .
[9] James Gillespie. On Ding injective, Ding projective, and Ding flat modules and complexes , 2015, 1512.05999.
[10] James Gillespie. Models for homotopy categories of injectives and Gorenstein injectives , 2015, 1502.05530.
[11] J. Šťovíček. On purity and applications to coderived and singularity categories , 2014, 1412.1615.
[12] D. Bravo,et al. Absolutely Clean, Level, and Gorenstein AC-Injective Complexes , 2014, 1408.7089.
[13] Mark Hovey,et al. The stable module category of a general ring , 2014, 1405.5768.
[14] Zhongkui Liu,et al. Model Structures on Categories of Complexes Over Ding-Chen Rings , 2013 .
[15] I. Emmanouil. On the finiteness of Gorenstein homological dimensions , 2012 .
[16] James Gillespie. Gorenstein complexes and recollements from cotorsion pairs , 2012, 1210.0196.
[17] Xiaoyan Yang,et al. Gorenstein Projective, Injective, and Flat Complexes , 2011 .
[18] Pu Zhang,et al. Gorenstein derived categories , 2010 .
[19] Overtoun M. G. Jenda,et al. Relative homological algebra , 1956 .
[20] James Gillespie. Model structures on modules over Ding-Chen rings , 2009, 0910.1942.
[21] Yuanlin Li,et al. STRONGLY GORENSTEIN FLAT MODULES , 2009, Journal of the Australian Mathematical Society.
[22] Liu Zhongkui,et al. Gorenstein injective complexes of modules over Noetherian rings , 2009 .
[23] Xiao-Wu Chen. Homotopy Equivalences induced by Balanced Pairs , 2008, 0812.0140.
[24] Xiaoyan Yang,et al. Strongly Gorenstein projective, injective and flat modules , 2008 .
[25] A. Neeman. The homotopy category of flat modules, and Grothendieck duality , 2008 .
[26] Nanqing Ding,et al. GORENSTEIN FP-INJECTIVE AND GORENSTEIN FLAT MODULES , 2008 .
[27] D. Bennis,et al. Rings Over Which the Class of Gorenstein Flat Modules is Closed Under Extensions , 2008, 0801.1183.
[28] Daniel Murfet. The mock homotopy category of projectives and Grothendieck duality , 2007 .
[29] N. Mahdou,et al. Strongly Gorenstein projective, injective, and flat modules , 2006, math/0606770.
[30] H. Krause,et al. Acyclicity versus total acyclicity for complexes over noetherian rings , 2005, Documenta Mathematica.
[31] H. Krause. the stable derived category of a noetherian scheme , 2004, Compositio Mathematica.
[32] Henrik Holm,et al. Gorenstein homological dimensions , 2004 .
[33] James Gillespie. The flat model structure on () , 2004 .
[34] Peter Jørgensen. The homotopy category of complexes of projective modules , 2003, math/0312088.
[35] Amnon Neeman,et al. The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .
[36] Overtoun M. G. Jenda,et al. Gorenstein injective and projective modules , 1995 .
[37] A. Neeman. The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , 1992 .
[38] J. Kuzmanovich,et al. On the global dimension of fibre products. , 1988 .