Multiplexing encryption–decryption via lateral shifting of a random phase mask

We present an holographic memory optical arrangement based on the successive shifting of a random pure-phase mask to achieve encrypted images multiplexing. The input images are encrypted to a stationary white noise using the usual double random encoding in the Fresnel domain. The encrypted information is imaged in a photorefractive crystal where also a reference beam impinges. In the holographic memory, a BSO crystal is used to provide both a recording medium and a phase conjugate mirror. The combination of these two features supplies at the same time the necessary exact cancellation of the random pure-phase mask as well as allows a real-time decryption process. Successive images are encrypted and position-encoded by speckle patterns arising from the random pure-phase mask in-plane shifting between exposures. We include experimental results to corroborate the multiplexing capability and the read-out fidelity of the proposed arrangement.

[1]  Bahram Javidi,et al.  Influence of a perturbation in a double phase-encoding system , 1998 .

[2]  Bahram Javidi,et al.  Encrypted optical memory using double-random phase encoding. , 1997 .

[3]  Myrian Tebaldi,et al.  Experimental study of volume speckle in four-wave mixing arrangement , 2003 .

[4]  Ching-Cherng Sun,et al.  Enhancement of signal-to-noise ratio of a double random phase encoding encryption system , 2001 .

[5]  A Yariv,et al.  Optical data storage using orthogonal wavelength multiplexed volume holograms. , 1992, Optics letters.

[6]  W C Su,et al.  Three-dimensional shifting selectivity of random phase encoding in volume holograms. , 2001, Applied optics.

[7]  B Javidi,et al.  Optical image encryption based on input plane and Fourier plane random encoding. , 1995, Optics letters.

[8]  G Roosen,et al.  Potentialities and limitations of hologram multiplexing by using the phase-encoding technique. , 1992, Applied optics.

[9]  Theo T. Tschudi,et al.  Volume hologram multiplexing using a deterministic phase encoding method , 1991 .

[10]  G. Unnikrishnan,et al.  Optical encryption by double-random phase encoding in the fractional Fourier domain. , 2000, Optics letters.

[11]  W. J. Burke,et al.  Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3 , 1975 .

[12]  G Unnikrishnan,et al.  Optical encryption system that uses phase conjugation in a photorefractive crystal. , 1998, Applied optics.

[13]  P. J. van Heerden,et al.  Theory of Optical Information Storage in Solids , 1963 .

[14]  Bahram Javidi,et al.  Optical pattern recognition for validation and security verification , 1994 .

[15]  F. Mok,et al.  Angle-multiplexed storage of 5000 holograms in lithium niobate. , 1993, Optics letters.

[16]  Kehar Singh,et al.  Fully phase encryption using fractional Fourier transform , 2003 .

[17]  B Javidi,et al.  Encrypted optical memory system using three-dimensional keys in the Fresnel domain. , 1999, Optics letters.

[18]  P. Yeh,et al.  Introduction to photorefractive nonlinear optics , 1993 .

[19]  G Pauliat,et al.  Dynamic phase-encoding storage of 64 images in a BaTiO3 photorefractive crystal. , 1994, Optics letters.

[20]  Ching-Cherng Sun,et al.  Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm , 2001 .

[21]  Wei-Chia Su,et al.  Three-dimensional shifting selectivity of decryption phase mask in a double random phase encoding holographic memory , 2004 .

[22]  B Wang,et al.  Shift-tolerance property of an optical double-random phase-encoding encryption system. , 2000, Applied optics.

[23]  D Psaltis,et al.  Shift multiplexing with spherical reference waves. , 1996, Applied optics.