On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics

Abstract In this paper, we establish an optimal blow-up criterion for classical solutions to the incompressible resistive Hall-magnetohydrodynamic equations. We also prove two global-in-time existence results of the classical solutions for small initial data, the smallness conditions of which are given by the suitable Sobolev and the Besov norms respectively. Although the Sobolev space version is already an improvement of the corresponding result in [4] , the optimality in terms of the scaling property is achieved via the Besov space estimate. The special property of the energy estimate in terms of B ˙ 2 , 1 s norm is essential for this result. Contrary to the usual MHD the global well-posedness in the 2 1 2 dimensional Hall-MHD is wide open.

[1]  S. Kaniel,et al.  The initial value problem for the navier-stokes equations , 1966 .

[2]  Luis Vega,et al.  Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .

[3]  R. Grauer,et al.  Bifurcation analysis of magnetic reconnection in Hall-MHD-systems , 2005 .

[4]  Dongho Chae,et al.  On the temporal decay for the Hall-magnetohydrodynamic equations , 2013, 1302.4601.

[5]  H. Triebel Theory Of Function Spaces , 1983 .

[6]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[7]  Hideo Kozono,et al.  Bilinear estimates in BMO and the Navier-Stokes equations , 2000 .

[8]  Dongho Chae,et al.  Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations , 2003 .

[9]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[10]  A. Ioffe,et al.  THE HALL EFFECT AND THE DECAY OF MAGNETIC FIELDS , 1997 .

[11]  S. Balbus,et al.  Linear Analysis of the Hall Effect in Protostellar Disks , 2000, astro-ph/0010229.

[12]  Pierre Degond,et al.  Well-posedness for Hall-magnetohydrodynamics , 2012, 1212.3919.

[13]  L. Berselli On a regularity criterion for the solutions to the 3D Navier-Stokes equations , 2002, Differential and Integral Equations.

[14]  M. Lighthill,et al.  Studies on Magneto-Hydrodynamic Waves and other Anisotropic wave motions , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  TAKAYOSHI OGAWA,et al.  Sharp Sobolev Inequality of Logarithmic Type and the Limiting Regularity Condition to the Harmonic Heat Flow , 2003, SIAM J. Math. Anal..

[16]  T. Forbes Magnetic reconnection in solar flares , 2016 .

[17]  Pierre Degond,et al.  Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system , 2011 .

[18]  Pablo D. Mininni,et al.  Dynamo Action in Magnetohydrodynamics and Hall-Magnetohydrodynamics , 2003 .