On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics
暂无分享,去创建一个
[1] S. Kaniel,et al. The initial value problem for the navier-stokes equations , 1966 .
[2] Luis Vega,et al. Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .
[3] R. Grauer,et al. Bifurcation analysis of magnetic reconnection in Hall-MHD-systems , 2005 .
[4] Dongho Chae,et al. On the temporal decay for the Hall-magnetohydrodynamic equations , 2013, 1302.4601.
[5] H. Triebel. Theory Of Function Spaces , 1983 .
[6] Akira Ogawa,et al. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .
[7] Hideo Kozono,et al. Bilinear estimates in BMO and the Navier-Stokes equations , 2000 .
[8] Dongho Chae,et al. Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations , 2003 .
[9] Andrew J. Majda,et al. Vorticity and Incompressible Flow: Index , 2001 .
[10] A. Ioffe,et al. THE HALL EFFECT AND THE DECAY OF MAGNETIC FIELDS , 1997 .
[11] S. Balbus,et al. Linear Analysis of the Hall Effect in Protostellar Disks , 2000, astro-ph/0010229.
[12] Pierre Degond,et al. Well-posedness for Hall-magnetohydrodynamics , 2012, 1212.3919.
[13] L. Berselli. On a regularity criterion for the solutions to the 3D Navier-Stokes equations , 2002, Differential and Integral Equations.
[14] M. Lighthill,et al. Studies on Magneto-Hydrodynamic Waves and other Anisotropic wave motions , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[15] TAKAYOSHI OGAWA,et al. Sharp Sobolev Inequality of Logarithmic Type and the Limiting Regularity Condition to the Harmonic Heat Flow , 2003, SIAM J. Math. Anal..
[16] T. Forbes. Magnetic reconnection in solar flares , 2016 .
[17] Pierre Degond,et al. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system , 2011 .
[18] Pablo D. Mininni,et al. Dynamo Action in Magnetohydrodynamics and Hall-Magnetohydrodynamics , 2003 .