Proceedings of the Fourth International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Biological Shape Variability Modeling (MFCA 2013), Nagoya, Japan

Computational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the first edition of this workshop in 2006, second edition in New-York in 2008, the third edition in Toronto in 2011, the forth edition was held in Nagoya Japan on September 22 2013.

[1]  Paul M. Thompson,et al.  Inverse-Consistent Surface Mapping with Laplace-Beltrami Eigen-Features , 2009, IPMI.

[2]  H. Jacobs,et al.  Lagrangian Mechanics on Centered Semi-direct Products , 2015 .

[3]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[4]  Yoshitaka Masutani,et al.  Probabilistic Modeling of Landmark Distances and Structure for Anomaly-proof Landmark Detection , 2011 .

[5]  Daniel Rueckert,et al.  Spatial transformation of motion and deformation fields using nonrigid registration , 2004, IEEE Transactions on Medical Imaging.

[6]  D. Mumford,et al.  A Metric on Shape Space with Explicit Geodesics , 2007, 0706.4299.

[7]  Martha Elizabeth Shenton,et al.  Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis , 2009, Comput. Aided Des..

[8]  Dror Varolin Riemann Surfaces by Way of Complex Analytic Geometry , 2011 .

[9]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[10]  Paolo Marcellini,et al.  Semicontinuity problems in the calculus of variations , 1980 .

[11]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[12]  D. Louis Collins,et al.  Hippocampal shape analysis using medial surfaces , 2001, NeuroImage.

[13]  Eldad Haber,et al.  Intensity Gradient Based Registration and Fusion of Multi-modal Images , 2006, MICCAI.

[14]  Karl J. Friston,et al.  Identifying Global Anatomical Differences: Deformation-Based Morphometry , 1998, NeuroImage.

[15]  P. Thomas Fletcher,et al.  Sasaki metrics for analysis of longitudinal data on manifolds , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Darryl D. Holm,et al.  The Momentum Map Representation of Images , 2009, J. Nonlinear Sci..

[17]  Peter Bühlmann,et al.  Missing values: sparse inverse covariance estimation and an extension to sparse regression , 2009, Statistics and Computing.

[18]  Richard M. Leahy,et al.  BrainSuite: An Automated Cortical Surface Identification Tool , 2000, MICCAI.

[19]  James Smith Table of Contents. , 2016, Journal of primary health care.

[20]  Michael I. Miller,et al.  Mapping of hyperelastic deformable templates using the finite element method , 1995, Optics & Photonics.

[21]  A. Toga,et al.  Mapping brain asymmetry , 2003, Nature Reviews Neuroscience.

[22]  Paul Suetens,et al.  SPARC: Unified framework for automatic segmentation, probabilistic atlas construction, registration and clustering of brain MR images , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[23]  Kanti V. Mardia,et al.  The Statistical Analysis of Shape , 1998 .

[24]  Christos Davatzikos,et al.  Why voxel-based morphometric analysis should be used with great caution when characterizing group differences , 2004, NeuroImage.

[25]  Richard M. Leahy,et al.  A Method for Automated Cortical Surface Registration and Labeling , 2012, WBIR.

[26]  Christos Davatzikos,et al.  Voxel-Based Morphometry Using the RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy , 2001, NeuroImage.

[27]  Nicholas Ayache,et al.  Geometric Variability of the Scoliotic Spine Using Statistics on Articulated Shape Models , 2008, IEEE Transactions on Medical Imaging.

[28]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[29]  Paul M. Thompson,et al.  Multi-atlas tensor-based morphometry and its application to a genetic study of 92 twins , 2008 .

[30]  Xue Hua,et al.  Detecting brain growth patterns in normal children using tensor‐based morphometry , 2009, Human brain mapping.

[31]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[32]  Lok Ming Lui,et al.  Brain Surface Conformal Parameterization Using Riemann Surface Structure , 2007, IEEE Transactions on Medical Imaging.

[33]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[34]  Laurent D. Cohen,et al.  Local vs Global Descriptors of Hippocampus Shape Evolution for Alzheimer's Longitudinal Population Analysis , 2012, STIA.

[35]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[36]  X. Pennec Left-Invariant Riemannian Elasticity: a distance on shape diffeomorphisms ? , 2006 .

[37]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[38]  Julien Lefèvre,et al.  Model-Driven Harmonic Parameterization of the Cortical Surface: HIP-HOP , 2011, IEEE Transactions on Medical Imaging.

[39]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[40]  Mert R. Sabuncu,et al.  Image-driven population analysis through mixture modeling , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[41]  Paul M. Thompson,et al.  Gene Expression Data to Mouse Atlas Registration Using a Nonlinear Elasticity Smoother and Landmark Points Constraints , 2012, J. Sci. Comput..

[42]  Gary E. Christensen,et al.  Deformable Shape Models for Anatomy , 1994 .

[43]  Shaohua Kevin Zhou,et al.  Anatomical Landmark Detection Using Nearest Neighbor Matching and Submodular Optimization , 2012, MICCAI.

[44]  Jan Modersitzki,et al.  FAIR: Flexible Algorithms for Image Registration , 2009 .

[45]  Stefano Soatto,et al.  A New Geometric Metric in the Space of Curves, and Applications to Tracking Deforming Objects by Prediction and Filtering , 2011, SIAM J. Imaging Sci..

[46]  Yalin Wang,et al.  3 D vs . 2 D Surface Shape Analysis of the Corpus Callosum in Premature Neonates , 2012 .

[47]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[48]  Torsten Rohlfing,et al.  Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation , 2004, IEEE Transactions on Medical Imaging.

[49]  Martin Styner,et al.  Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. , 2006, The insight journal.

[50]  Sarang C. Joshi,et al.  IDiff: Irrotational Diffeomorphisms for Computational Anatomy , 2013, IPMI.

[51]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[52]  Michael I. Miller,et al.  Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator , 2006, IEEE Transactions on Medical Imaging.

[53]  Moo K. Chung,et al.  Cortical thickness analysis in autism with heat kernel smoothing , 2005, NeuroImage.

[54]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[55]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[56]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[57]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[58]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[59]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[60]  Luminita A. Vese,et al.  A combined segmentation and registration framework with a nonlinear elasticity smoother , 2009, Comput. Vis. Image Underst..

[61]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[62]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[63]  Anuj Srivastava,et al.  Parameterization-Invariant Shape Comparisons of Anatomical Surfaces , 2011, IEEE Transactions on Medical Imaging.

[64]  Paul A. Yushkevich,et al.  Continuous Medial Representation for Anatomical Structures , 2006, IEEE Transactions on Medical Imaging.

[65]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[66]  Michael I. Miller,et al.  Transport of Relational Structures in Groups of Diffeomorphisms , 2008, Journal of Mathematical Imaging and Vision.

[67]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[68]  G. Sundaramoorthi,et al.  Properties of Sobolev-type metrics in the space of curves , 2006, math/0605017.

[69]  Mert R. Sabuncu,et al.  Effects of registration regularization and atlas sharpness on segmentation accuracy , 2008, Medical Image Anal..

[70]  Paul A. Yushkevich,et al.  Multiscale deformable model segmentation and statistical shape analysis using medial descriptions , 2002, IEEE Transactions on Medical Imaging.

[71]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[72]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[73]  Dorin Comaniciu,et al.  Hierarchical parsing and semantic navigation of full body CT data , 2009, Medical Imaging.

[74]  Günther Platsch,et al.  Improved Anatomical Landmark Localization in Medical Images Using Dense Matching of Graphical Models , 2010, BMVC.

[75]  A. Bobenko,et al.  BONNET SURFACES AND PAINLEVE EQUATIONS , 1998 .

[76]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[77]  Anuj Srivastava,et al.  Elastic Shape Models for Face Analysis Using Curvilinear Coordinates , 2009, Journal of Mathematical Imaging and Vision.

[78]  Michael Elad,et al.  Shape from moments - an estimation theory perspective , 2004, IEEE Transactions on Signal Processing.

[79]  Alan C. Evans,et al.  A Unified Statistical Approach to Deformation-Based Morphometry , 2001, NeuroImage.

[80]  Anuj Srivastava,et al.  Riemannian Analysis of Probability Density Functions with Applications in Vision , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[81]  Paolo Marcellini,et al.  Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals , 1985 .

[82]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.

[83]  Arthur W. Toga,et al.  Cortical Peeling: CSF / Grey / White Matter Boundaries Visualized by Nesting Isosurfaces , 1996, VBC.

[84]  Fillia Makedon,et al.  Spherical mapping for processing of 3D closed surfaces , 2006, Image Vis. Comput..

[85]  I. Holopainen Riemannian Geometry , 1927, Nature.

[86]  Nicholas Ayache,et al.  Schild's Ladder for the Parallel Transport of Deformations in Time Series of Images , 2011, IPMI.

[87]  G. Raiconi,et al.  On the minimization of quadratic functions with bilinear constraints via augmented Lagrangians , 1987 .

[88]  Martin Bauer,et al.  Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group , 2011 .

[89]  Dohyung Seo A geometric approach to image matching and synthesis of diffeomorphic paths , 2014 .

[90]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[91]  P. V. N. Marrero A numerical method for detecting singular minimizers of multidimensional problems in nonlinear elasticity , 1990 .

[92]  Paul M. Thompson,et al.  Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors , 2008, IEEE Transactions on Medical Imaging.

[93]  Alain Trouvé,et al.  Statistical models of sets of curves and surfaces based on currents , 2009, Medical Image Anal..

[94]  Jan Modersitzki,et al.  Curvature Based Image Registration , 2004, Journal of Mathematical Imaging and Vision.

[95]  Martin Reuter,et al.  Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.

[96]  Anand A. Joshi,et al.  Cortical Shape Analysis using the Anisotropic Global Point Signature , 2013 .

[97]  Kenneth Knoblauch,et al.  The Location of Feedback-Related Activity in the Midcingulate Cortex Is Predicted by Local Morphology , 2013, The Journal of Neuroscience.

[98]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[99]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[100]  Baba C. Vemuri,et al.  Computing Diffeomorphic Paths for Large Motion Interpolation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[101]  Jerrold E. Marsden,et al.  Lagrangian Reduction by Stages , 2001 .

[102]  Richard M. Leahy,et al.  Comparison of landmark-based and automatic methods for cortical surface registration , 2010, NeuroImage.

[103]  Stephen R. Marsland,et al.  Metrics, Connections, and Correspondence: The Setting for Groupwise Shape Analysis , 2011, EMMCVPR.

[104]  Richard M. Leahy,et al.  An Invariant Shape Representation Using the Anisotropic Helmholtz Equation , 2012, MICCAI.

[105]  Roger P. Woods,et al.  Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation , 2003, NeuroImage.

[106]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[107]  James D. Thomas,et al.  Quantification of myocardial segmental function in acute and chronic ischemic heart disease and implications for cardiovascular cell therapy trials: a review from the NHLBI-Cardiovascular Cell Therapy Research Network. , 2011, JACC. Cardiovascular imaging.

[108]  Yoshitaka Masutani,et al.  Coarse-to-fine localization of anatomical landmarks in CT images based on multi-scale local appearance and rotation-invariant spatial landmark distribution model , 2013, Medical Imaging.