The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature

We prove that the least-perimeter way to enclose prescribed area in the plane with smooth, rotationally symmetric, complete metric of nonincreasing Gauss curvature consists of one or two circles, bounding a disc, the complement of a disc, or an annulus. We also provide a new isoperimetric inequality in general surfaces with boundary.

[1]  Bruce Kleiner,et al.  An isoperimetric comparison theorem , 1992 .

[2]  M. Ritoré Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces , 2001 .

[3]  R. Osserman The isoperimetric inequality , 1978 .

[4]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[5]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[6]  I. Benjamini,et al.  A new isoperimetric comparison theorem for surfaces of variable curvature , 1996 .

[7]  Frank Morgan,et al.  The Isoperimetric Problem on Surfaces , 1999 .

[8]  E. Groves A Dissertation ON , 1928 .

[9]  Frank Morgan,et al.  Riemannian geometry : a beginner's guide , 1998 .

[10]  Ben Andrews,et al.  Contraction of convex hypersurfaces by their affine normal , 1996 .

[11]  H. Fédérer Geometric Measure Theory , 1969 .

[12]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[13]  S. Hildebrandt,et al.  Some remarks on minimal surfaces in riemannian manifolds , 1970 .

[14]  Frank Morgan,et al.  Some Sharp Isoperimetric Theorems for Riemannian Manifolds , 2000 .

[15]  W. Gruyter Mean curvature ow and geometric inequalities , 1998 .

[16]  R. Ye Foliation by constant mean curvature spheres , 1991 .

[17]  J. Hass,et al.  Geodesics and soap bubbles in surfaces , 1996 .

[18]  Peter M. Topping,et al.  MEAN CURVATURE FLOW AND GEOMETRIC INEQUALITIES , 1998 .

[19]  W. Rudin Real and complex analysis , 1968 .

[20]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[21]  B. Bowditch The minimal volume of the plane , 1993, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[22]  P. Pansu,et al.  Sur le volume minimal de ${R}^2$ , 1986 .

[23]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[24]  B. Zakhariev,et al.  Direct and Inverse Problems , 1990 .

[25]  H. Bray The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature (thesis) , 1997, 0902.3241.

[26]  I. Holopainen Riemannian Geometry , 1927, Nature.

[27]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[28]  B. White Complete surfaces of finite total curvature , 1987 .

[29]  P. Pansu Sur la régularité du profil isopérimétrique des surfaces riemanniennes compactes , 1998 .

[30]  R. Ye Constant mean curvature foliation: singularity structure and curvature estimate. , 1996 .

[31]  P. Topping The isoperimetric inequality on a surface , 1999 .