Characterization of Mason Gully (H5): The second recovered fall from the Desert Fireball Network
暂无分享,去创建一个
Mark L. Rivers | Martin C. Towner | Gretchen Benedix | Daniel T. Britt | James O. Thostenson | Pavel Spurný | Jon M. Friedrich | K. A. Dyl | P. Spurný | D. Britt | P. Bland | G. Benedix | K. Howard | M. Rivers | M. Towner | A. Halfpenny | Richard C. Greenwood | Robert J. Macke | Phil A. Bland | Mary Claire O'Keefe | Kieren T. Howard | Angela Halfpenny | Rebecca A. Rudolph | A. W. R. Bevan | J. Friedrich | R. Greenwood | R. Macke | A. Bevan | J. Thostenson | R. Rudolph | Mary Claire O'Keefe
[1] K. Keil,et al. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .
[2] S. Chakraborty,et al. H-chondrite parent asteroid: A multistage cooling, fragmentation and re-accretion history constrained by thermometric studies, diffusion kinetic modeling and geochronological data , 2013 .
[3] R. Clayton,et al. Cristobalite-pyroxene in an L6 chondrite: implications for metamorphism , 1981 .
[4] C. Isachsen,et al. Ancient porosity preserved in ordinary chondrites: Examining shock and compaction on young asteroids , 2014 .
[5] Ian A. Franchi,et al. The Australian Desert Fireball Network: a new era for planetary science , 2012 .
[6] Selmer M. Johnson,et al. Chemical Equilibrium in Complex Mixtures , 1958 .
[7] W. R. Schmus. The mineralogy and petrology of chondritic meteorites , 1969 .
[8] L. Lemelle,et al. Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction , 2003 .
[9] M. Lipschutz,et al. Chemical studies of L chondrites. V: compositional patterns for 49 trace elements in 14 L4-6 and 7 LL4-6 falls , 2003 .
[10] C. Pillinger,et al. High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications , 1999 .
[11] Mark L. Rivers,et al. Three-dimensional imaging of ordinary chondrite microporosity at 2.6 μm resolution , 2013 .
[12] J. Beckett,et al. The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature , 2002 .
[13] J. Wasson,et al. The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions , 1993 .
[14] A. Ruzicka,et al. Deformation and thermal histories of ordinary chondrites: Evidence for post-deformation annealing and syn-metamorphic shock , 2015 .
[15] S. Wolf,et al. Determination of 11 major and minor elements in chondritic meteorites by inductively coupled plasma mass spectrometry. , 2012, Talanta.
[16] A. Rubin. Chromite-plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites , 2003 .
[17] P. Rochette,et al. Calibration of in situ magnetic susceptibility measurements , 2004 .
[18] A. Halfpenny. Some important practical issues for the collection and manipulation of Electron Backscatter Diffraction (EBSD) data from geological samples , 2010 .
[19] J. Goldstein,et al. Ordinary chondrite metallography: Part 2. Formation of zoned and unzoned metal particles in relatively unshocked H, L, and LL chondrites , 2003 .
[20] R. Clayton,et al. Oxygen isotope studies of ordinary chondrites , 1991 .
[21] Mark S. Ghiorso,et al. Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .
[22] K. Keil,et al. Shock metamorphism of ordinary chondrites , 1991 .
[23] L. L. Lundberg,et al. Plutonium, uranium and rare earths in the phosphates of ordinary chondrites—the quest for a chronometer , 1989 .
[24] Philip A. Bland. The Desert Fireball Network , 2004 .
[25] D. Baratoux,et al. Thermal history of the H-chondrite parent body: Implications for metamorphic grade and accretionary time-scales , 2013 .
[26] M. Trieloff,et al. Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion , 2013 .
[27] R. Kretz. Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data , 1982 .
[28] John A. Wood,et al. A chemical-petrologic classification for the chondritic meteorites. , 1967 .
[29] T. Mccoy,et al. Analysis of ordinary chondrites using powder X‐ray diffraction: 1. Modal mineral abundances , 2010 .
[30] R. Binns. Farmington Meteorite: Cristobalite Xenoliths and Blackening , 1967, Science.
[31] D. Ebel,et al. Metal veins in the Kernouvé (H6 S1) chondrite: Evidence for pre- or syn-metamorphic shear deformation , 2013 .
[32] A. Rubin,et al. Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .
[33] M. Trieloff,et al. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.
[34] Mark L. Rivers,et al. Three-dimensional petrography of metal phases in equilibrated L chondrites—Effects of shock loading and dynamic compaction , 2008 .
[35] Clarence Norman Fenner,et al. The stability relations of the silica minerals , 1913 .
[36] D. Lauretta,et al. Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons , 2005 .
[37] H. McSween,et al. Oxidation during metamorphism of the ordinary chondrites , 1993 .
[38] R. T. Dodd. Metamorphism of the ordinary chondrites: A review , 1969 .
[39] J. Wasson,et al. Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[40] G. Benedix,et al. Partial melting of H6 ordinary chondrite Kernouvé: Constraints on the effects of reducing conditions on oxidized compositions , 2008 .
[41] Klaus Keil,et al. The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites , 1964 .
[42] R. Vernon. Granites really are magmatic : using microstructural evidence to refute some obstinate hypotheses , 2010 .
[43] P. Bland,et al. Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .
[44] H. McSween,et al. The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry , 1991 .
[45] R. Hough,et al. Preparation of Samples with Both Hard and Soft Phases for Electron Backscatter Diffraction: Examples from Gold Mineralization , 2013, Microscopy and Microanalysis.
[46] H. McSween,et al. Revised model calculations for the thermal histories of ordinary chondrite parent bodies , 1996 .
[47] D. Burnett,et al. Phosphate control on the thorium/uranium variations in ordinary chondrites: Improving solar system abundances , 2001 .
[48] A. Rubin. Postshock annealing and postannealing shock in equilibrated ordinary chondrites: implications for the thermal and shock histories of chondritic asteroids , 2004 .
[49] M. Ghiorso,et al. Chromite as a petrogenetic indicator , 1991 .
[50] C. Floss,et al. Large silica‐rich igneous‐textured inclusions in the Buzzard Coulee chondrite: Condensates, differentiates, or impact melts? , 2012 .
[51] M. Cintala,et al. Shock melting of ordinary chondrite powders and implications for asteroidal regoliths , 2005 .
[52] A. Tomkins. What metal‐troilite textures can tell us about post‐impact metamorphism in chondrite meteorites , 2009 .
[53] Lutz Nasdala,et al. Origin of SiO2-rich components in ordinary chondrites , 2006 .
[54] Z. Ouyang,et al. Silica-bearing chondrules and clasts in ordinary chondrites☆ , 1986 .
[55] G. Eriksson,et al. ChemSage—A computer program for the calculation of complex chemical equilibria , 1990 .
[56] R. Schmitt,et al. Shock experiments with the H6 chondrite Kernouvé: Pressure calibration of microscopic shock effects , 2000 .
[57] E. Scott,et al. Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constraints from metallic Fe–Ni , 2014, 1404.0448.
[58] A. Rubin. A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites , 1992 .
[59] Ian A. Franchi,et al. Cristobalite- and tridymite-bearing clasts in Parnallee (LL3) and Farmington (L5) , 1995 .
[60] C. Maden,et al. Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body , 2008 .
[61] H. Takeda,et al. Modal mineral abundances and the differentiation trends in primitive achondrites , 1998 .