Characterization of Mason Gully (H5): The second recovered fall from the Desert Fireball Network

Mason Gully, the second meteorite recovered using the Desert Fireball Network (DFN), is characterized using petrography, mineralogy, oxygen isotopes, bulk chemistry, and physical properties. Geochemical data are consistent with its classification as an H5 ordinary chondrite. Several properties distinguish it from most other H chondrites. Its 10.7% porosity is predominantly macroscopic, present as intergranular void spaces rather than microscopic cracks. Modal mineralogy (determined via PS-XRD, element mapping via energy dispersive spectroscopy [EDS], and X-ray tomography [for sulfide, metal, and porosity volume fractions]) consistently gives an unusually low olivine/orthopyroxene ratio (0.67−0.76 for Mason Gully versus ~1.3 for typical H5 ordinary chondrites). Widespread “silicate darkening” is observed. In addition, it contains a bright green crystalline object at the surface of the recovered stone (diameter ≈ 1.5 mm), which has a tridymite core with minor α-quartz and a rim of both low- and high-Ca pyroxene. The mineralogy allows the calculation of the temperatures and ƒ(O2) characterizing thermal metamorphism on the parent body using both the two-pyroxene and the olivine-chromite geo-oxybarometers. These indicate that MG experienced a peak metamorphic temperature of ~900 °C and had a similar ƒ(O2) to Kernouve (H6) that was buffered by the reaction between olivine, metal, and pyroxene. There is no evidence for shock, consistent with the observed porosity structure. Thus, while Mason Gully has some unique properties, its geochemistry indicates a similar thermal evolution to other H chondrites. The presence of tridymite, while rare, is seen in other OCs and likely exogenous; however, the green object itself may result from metamorphism.

[1]  K. Keil,et al.  A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .

[2]  S. Chakraborty,et al.  H-chondrite parent asteroid: A multistage cooling, fragmentation and re-accretion history constrained by thermometric studies, diffusion kinetic modeling and geochronological data , 2013 .

[3]  R. Clayton,et al.  Cristobalite-pyroxene in an L6 chondrite: implications for metamorphism , 1981 .

[4]  C. Isachsen,et al.  Ancient porosity preserved in ordinary chondrites: Examining shock and compaction on young asteroids , 2014 .

[5]  Ian A. Franchi,et al.  The Australian Desert Fireball Network: a new era for planetary science , 2012 .

[6]  Selmer M. Johnson,et al.  Chemical Equilibrium in Complex Mixtures , 1958 .

[7]  W. R. Schmus The mineralogy and petrology of chondritic meteorites , 1969 .

[8]  L. Lemelle,et al.  Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction , 2003 .

[9]  M. Lipschutz,et al.  Chemical studies of L chondrites. V: compositional patterns for 49 trace elements in 14 L4-6 and 7 LL4-6 falls , 2003 .

[10]  C. Pillinger,et al.  High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications , 1999 .

[11]  Mark L. Rivers,et al.  Three-dimensional imaging of ordinary chondrite microporosity at 2.6 μm resolution , 2013 .

[12]  J. Beckett,et al.  The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature , 2002 .

[13]  J. Wasson,et al.  The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions , 1993 .

[14]  A. Ruzicka,et al.  Deformation and thermal histories of ordinary chondrites: Evidence for post-deformation annealing and syn-metamorphic shock , 2015 .

[15]  S. Wolf,et al.  Determination of 11 major and minor elements in chondritic meteorites by inductively coupled plasma mass spectrometry. , 2012, Talanta.

[16]  A. Rubin Chromite-plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites , 2003 .

[17]  P. Rochette,et al.  Calibration of in situ magnetic susceptibility measurements , 2004 .

[18]  A. Halfpenny Some important practical issues for the collection and manipulation of Electron Backscatter Diffraction (EBSD) data from geological samples , 2010 .

[19]  J. Goldstein,et al.  Ordinary chondrite metallography: Part 2. Formation of zoned and unzoned metal particles in relatively unshocked H, L, and LL chondrites , 2003 .

[20]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[21]  Mark S. Ghiorso,et al.  Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .

[22]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[23]  L. L. Lundberg,et al.  Plutonium, uranium and rare earths in the phosphates of ordinary chondrites—the quest for a chronometer , 1989 .

[24]  Philip A. Bland The Desert Fireball Network , 2004 .

[25]  D. Baratoux,et al.  Thermal history of the H-chondrite parent body: Implications for metamorphic grade and accretionary time-scales , 2013 .

[26]  M. Trieloff,et al.  Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion , 2013 .

[27]  R. Kretz Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data , 1982 .

[28]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .

[29]  T. Mccoy,et al.  Analysis of ordinary chondrites using powder X‐ray diffraction: 1. Modal mineral abundances , 2010 .

[30]  R. Binns Farmington Meteorite: Cristobalite Xenoliths and Blackening , 1967, Science.

[31]  D. Ebel,et al.  Metal veins in the Kernouvé (H6 S1) chondrite: Evidence for pre- or syn-metamorphic shear deformation , 2013 .

[32]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[33]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[34]  Mark L. Rivers,et al.  Three-dimensional petrography of metal phases in equilibrated L chondrites—Effects of shock loading and dynamic compaction , 2008 .

[35]  Clarence Norman Fenner,et al.  The stability relations of the silica minerals , 1913 .

[36]  D. Lauretta,et al.  Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons , 2005 .

[37]  H. McSween,et al.  Oxidation during metamorphism of the ordinary chondrites , 1993 .

[38]  R. T. Dodd Metamorphism of the ordinary chondrites: A review , 1969 .

[39]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[40]  G. Benedix,et al.  Partial melting of H6 ordinary chondrite Kernouvé: Constraints on the effects of reducing conditions on oxidized compositions , 2008 .

[41]  Klaus Keil,et al.  The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites , 1964 .

[42]  R. Vernon Granites really are magmatic : using microstructural evidence to refute some obstinate hypotheses , 2010 .

[43]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[44]  H. McSween,et al.  The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry , 1991 .

[45]  R. Hough,et al.  Preparation of Samples with Both Hard and Soft Phases for Electron Backscatter Diffraction: Examples from Gold Mineralization , 2013, Microscopy and Microanalysis.

[46]  H. McSween,et al.  Revised model calculations for the thermal histories of ordinary chondrite parent bodies , 1996 .

[47]  D. Burnett,et al.  Phosphate control on the thorium/uranium variations in ordinary chondrites: Improving solar system abundances , 2001 .

[48]  A. Rubin Postshock annealing and postannealing shock in equilibrated ordinary chondrites: implications for the thermal and shock histories of chondritic asteroids , 2004 .

[49]  M. Ghiorso,et al.  Chromite as a petrogenetic indicator , 1991 .

[50]  C. Floss,et al.  Large silica‐rich igneous‐textured inclusions in the Buzzard Coulee chondrite: Condensates, differentiates, or impact melts? , 2012 .

[51]  M. Cintala,et al.  Shock melting of ordinary chondrite powders and implications for asteroidal regoliths , 2005 .

[52]  A. Tomkins What metal‐troilite textures can tell us about post‐impact metamorphism in chondrite meteorites , 2009 .

[53]  Lutz Nasdala,et al.  Origin of SiO2-rich components in ordinary chondrites , 2006 .

[54]  Z. Ouyang,et al.  Silica-bearing chondrules and clasts in ordinary chondrites☆ , 1986 .

[55]  G. Eriksson,et al.  ChemSage—A computer program for the calculation of complex chemical equilibria , 1990 .

[56]  R. Schmitt,et al.  Shock experiments with the H6 chondrite Kernouvé: Pressure calibration of microscopic shock effects , 2000 .

[57]  E. Scott,et al.  Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constraints from metallic Fe–Ni , 2014, 1404.0448.

[58]  A. Rubin A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites , 1992 .

[59]  Ian A. Franchi,et al.  Cristobalite- and tridymite-bearing clasts in Parnallee (LL3) and Farmington (L5) , 1995 .

[60]  C. Maden,et al.  Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body , 2008 .

[61]  H. Takeda,et al.  Modal mineral abundances and the differentiation trends in primitive achondrites , 1998 .