Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.

Gene regulation in cis by riboswitches is prevalent in bacteria. The yybP-ykoY riboswitch family is quite widespread, yet its ligand and function remained unknown. Here, we characterize the Lactococcus lactis yybP-ykoY orphan riboswitch as a Mn(2+)-dependent transcription-ON riboswitch, with a ∼30-40 μM affinity for Mn(2+). We further determined its crystal structure at 2.7 Å to elucidate the metal sensing mechanism. The riboswitch resembles a hairpin, with two coaxially stacked helices tethered by a four-way junction and a tertiary docking interface. The Mn(2+)-sensing region, strategically located at the highly conserved docking interface, has two metal binding sites. Whereas one site tolerates the binding of either Mg(2+) or Mn(2+), the other site strongly prefers Mn(2+) due to a direct contact from the N7 of an invariable adenosine. Mutagenesis and a Mn(2+)-free E. coli yybP-ykoY structure further reveal that Mn(2+) binding is coupled with stabilization of the Mn(2+)-sensing region and the aptamer domain.

[1]  J. Helmann,et al.  The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and σB regulons , 2003, Molecular microbiology.

[2]  X. Zhuang,et al.  Correlating Structural Dynamics and Function in Single Ribozyme Molecules , 2002, Science.

[3]  S. Altuvia,et al.  Changes in transcriptional pausing modify the folding dynamics of the pH-responsive RNA element , 2013, Nucleic acids research.

[4]  Chaozu He,et al.  A Novel Manganese Efflux System, YebN, Is Required for Virulence by Xanthomonas oryzae pv. oryzae , 2011, PloS one.

[5]  J. Helmann,et al.  Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli , 2010, Proceedings of the National Academy of Sciences.

[6]  G. Storz,et al.  The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. , 2015, Molecular cell.

[7]  Catherine A. Wakeman,et al.  Structure and Mechanism of a Metal-Sensing Regulatory RNA , 2007, Cell.

[8]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[9]  J. Doudna,et al.  Crystallization of RNA and RNA-protein complexes. , 2004, Methods.

[10]  R. Grubbs Intracellular magnesium and magnesium buffering , 2002, Biometals.

[11]  A. Serganov,et al.  Themes and variations in riboswitch structure and function. , 2014, Biochimica et biophysica acta.

[12]  Ronald R. Breaker,et al.  Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing , 2013, Nucleic acids research.

[13]  K. Weeks,et al.  A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. , 2007, Journal of the American Chemical Society.

[14]  Karissa Y. Sanbonmatsu,et al.  The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch , 2012, Nucleic acids research.

[15]  Jeffrey E. Barrick,et al.  New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  K. Weeks,et al.  Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution , 2006, Nature Protocols.

[17]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[18]  R. Batey,et al.  Single-Molecule Conformational Dynamics of a Biologically Functional Hydroxocobalamin Riboswitch , 2014, Journal of the American Chemical Society.

[19]  I. Boneca,et al.  A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and Neisseria meningitidis Virulence , 2011, PLoS pathogens.

[20]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[21]  Eric P. Skaar,et al.  The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts , 2010, PLoS pathogens.

[22]  Dinshaw J. Patel,et al.  Fluoride ion encapsulation by Mg2+ and phosphates in a fluoride riboswitch , 2012, Nature.

[23]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[24]  Kun-Yi Hsin,et al.  Mespeus--a database of metal interactions with proteins. , 2014, Methods in molecular biology.

[25]  R. Micura,et al.  Pseudoknot preorganization of the preQ1 class I riboswitch. , 2012, Journal of the American Chemical Society.

[26]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[27]  Tamar Schlick,et al.  Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function , 2012, PLoS Comput. Biol..

[28]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[29]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[30]  Y. Chen,et al.  Ribonuclease P catalysis requires Mg2+ coordinated to the pro-RP oxygen of the scissile bond. , 1997, Biochemistry.

[31]  P. Stragier,et al.  Plasmids for ectopic integration in Bacillus subtilis. , 1996, Gene.

[32]  R. Breaker,et al.  Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes , 2010, Genome Biology.

[33]  T. Henkin,et al.  T box RNA decodes both the information content and geometry of tRNA to affect gene expression , 2013, Proceedings of the National Academy of Sciences.

[34]  J. Helmann,et al.  Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins , 2000, Molecular microbiology.

[35]  Anna Marie Pyle,et al.  Crystal Structure of a Self-Spliced Group II Intron , 2008, Science.

[36]  S. Strobel,et al.  Structural Evidence for a Two-Metal-Ion Mechanism of Group I Intron Splicing , 2005, Science.

[37]  G. Storz,et al.  The Escherichia coli MntR Miniregulon Includes Genes Encoding a Small Protein and an Efflux Pump Required for Manganese Homeostasis , 2011, Journal of bacteriology.

[38]  A. Grossman,et al.  In Vivo Effects of Sporulation Kinases on Mutant Spo0A Proteins in Bacillus subtilis , 2001, Journal of bacteriology.

[39]  M. Fedor,et al.  Structure and function of the hairpin ribozyme. , 2000, Journal of molecular biology.

[40]  J. Helmann,et al.  Functional specialization within the Fur family of metalloregulators , 2007, BioMetals.

[41]  D. Lafontaine,et al.  A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. , 2007, RNA.

[42]  J. Imlay The Mismetallation of Enzymes during Oxidative Stress* , 2014, The Journal of Biological Chemistry.

[43]  J. Helmann Specificity of Metal Sensing: Iron and Manganese Homeostasis in Bacillus subtilis* , 2014, The Journal of Biological Chemistry.

[44]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[45]  Anna Marie Pyle,et al.  RCrane: semi-automated RNA model building , 2012, Acta crystallographica. Section D, Biological crystallography.

[46]  Grigory S. Filonov,et al.  Broccoli: Rapid Selection of an RNA Mimic of Green Fluorescent Protein by Fluorescence-Based Selection and Directed Evolution , 2014, Journal of the American Chemical Society.

[47]  R. Micura,et al.  The dynamic nature of RNA as key to understanding riboswitch mechanisms. , 2011, Accounts of chemical research.

[48]  E. Westhof,et al.  A pH-responsive riboregulator. , 2009, Genes & development.

[49]  R. Breaker,et al.  Challenges of ligand identification for riboswitch candidates , 2011, RNA biology.

[50]  J. Helmann,et al.  Origins of specificity and cross‐talk in metal ion sensing by Bacillus subtilis Fur , 2012, Molecular microbiology.

[51]  F. Archibald,et al.  Manganese acquisition by Lactobacillus plantarum , 1984, Journal of bacteriology.

[52]  A. Ke,et al.  Common themes and differences in SAM recognition among SAM riboswitches. , 2014, Biochimica et biophysica acta.

[53]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[54]  É. Massé,et al.  Dual-acting riboswitch control of translation initiation and mRNA decay , 2012, Proceedings of the National Academy of Sciences.