Performance enhancement of GaInP/GaAs heterojunction bipolar phototransistors using dc base bias

GaInP-GaAs heterojunction bipolar phototransistors grown by metal organic vapor phase epitaxy (MOVPE) and operated with frontside optical injection through the emitter are reported with high optical gain (<88) and record high frequency performance (28 GHz). Heteropassivation of the extrinsic base surface is employed using a depleted GaInP emitter layer between the nonself-aligned base contact and the emitter mesa. The phototransistor's performance is shown to improve with increasing dc base bias in agreement with predictions of a recently reported Gummel-Poon model. Experimental results are reported for devices with optical active areas of 10/spl times/10 /spl mu/m/sup 2/, 20/spl times/20 /spl mu/m/sup 2/, and 30/spl times/30 /spl mu/m/sup 2/, with peak measured cutoff frequencies of 28.5, 23.1, and 18.5 GHz, respectively, obtained at collector current densities between 2/spl times/10/sup 3/ and 6/spl times/10/sup 3/ A/cm/sup 2/.

[1]  S. M. Frimel,et al.  Gummel–Poon model for Npn heterojunction bipolar phototransistors , 1997 .

[2]  S. M. Frimel,et al.  A thermionic-field-diffusion model for Npn bipolar heterojunction phototransistors , 1997 .

[3]  Y. F. Yang,et al.  High frequency GaInP/GaAs heterostructure-emitter bipolar transistor with low offset voltage , 1997 .

[4]  P. Desrousseaux,et al.  Planar InGaP/GaAs HBTs for high speed optoelectronic circuit applications , 1997 .

[5]  T. J. Hall,et al.  Current analysis of polyimide passivated InGaP/GaAs HBT , 1996 .

[6]  H. Kamitsuna,et al.  Ultra-wideband monolithic photoreceivers using HBT-compatible HPTs with novel base circuits, and simultaneously integrated with an HBT amplifier , 1995 .

[7]  S. Chandrasekhar,et al.  20-Gb/s monolithic p-i-n/HBT photoreceiver module for 1.55-μm applications , 1995, IEEE Photonics Technology Letters.

[8]  E. Sano,et al.  InP/InGaAs double-heterostructure bipolar transistors for high-speed ICs and OEICs , 1995 .

[9]  C. Caneau,et al.  High-speed Ga0.51In0.49P/GaAs heterojunction phototransistors , 1995 .

[10]  E. Beam,et al.  RECENT DEVELOPMENTS IN GaInP/GaAs HETEROJUNCTION BIPOLAR TRANSISTORS , 1994 .

[11]  G. Y. Robinson,et al.  Transient grating measurements of ambipolar diffusion and carrier recombination in InGaP/lnAIP multiple quantum wells and InGaP bulk , 1994 .

[12]  S. Siala,et al.  DC to 2.5 Gb/s*4 p-i-n/HBT optical receiver array with low crosstalk , 1993, IEEE Photonics Technology Letters.

[13]  R. B. Nubling,et al.  High-bandwidth OEIC receivers using heterojunction bipolar transistors: Design and demonstration , 1993 .

[14]  Yicheng Lu,et al.  Shallow ohmic contact to both n‐ and p‐GaAs , 1993 .

[15]  C.C. Huang,et al.  High-current-gain Ga/sub 0.51/In/sub 0.49/P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy , 1992, IEEE Electron Device Letters.

[16]  S. Chandrasekhar,et al.  Demonstration of enhanced performance of an InP/InGaAs heterojunction phototransistor with a base terminal , 1991, IEEE Electron Device Letters.

[17]  D. Wight,et al.  High-gain GaInP/GaAs heterojunction phototransistor utilising guard-ring structure , 1989 .

[18]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[19]  E. Beam,et al.  RECENT DEVELOPMENTS IN GalnP/GaAs HETEROJUNCTION BIPOLAR TRANSISTORS , 1996 .

[20]  X. Zhang,et al.  16-GHz bandwidth InAlAs-InGaAs monolithically integrated p-i-n/HBT photoreceiver , 1995, IEEE Photonics Technology Letters.

[21]  D. A. Ahmari,et al.  High-speed, low-noise InGaP/GaAs heterojunction bipolar transistors , 1995, IEEE Electron Device Letters.

[22]  M. Razeghi,et al.  Electron transport properties of Ga/sub 0.51/In/sub 0.49/P for device applications , 1994 .

[23]  K. Honjo,et al.  Monolithic ultra-broadband transimpedance amplifiers using AlGaAs/GaAs heterojunction bipolar transistors , 1994 .

[24]  M. B. Das,et al.  Speed and sensitivity limitations of optoelectronic receivers based on MSM photodiode and millimeter-wave HBTs on InP substrate , 1992, IEEE Photonics Technology Letters.

[25]  Joe C. Campbell,et al.  Chapter 5 Phototransistors for Lightwave Communications , 1985 .