A review on tissue engineering scaffolds and their function in regenerative medicine

يشٍّظپ ِلاقه :ِهذقه فلبچ ظا یىی هضز ضَظٌه ِث یضبىّاض ِئاضا تؾا ُزَث ِخاَه ىآ بث ىٌَوبت ظبث طیز ظا یىقعپ نلػ ِو ییبّ تفبث ىب تیؾآ یبّ یه ىسث ُسیز سقبث . یؾسٌْه یلنا فسّ یىقعپ ٍ تفبث یتذبؾظبث يیعگیبخ ِؼؾَت زَجْث بی ٍ ظفح ،یظبؾظبث ضَظٌه ِث یتؿیظ یبّ زاَهًَبً ظا ُزبفتؾا بی ٍ ًَبً یضٍبٌف ٌِیهظ ضز یْخَت لثبل تبمیمحت طضبح لبح ضز .تؾا ماسًا زطىلوػ ٍ ُسیز تیؾآ تفبث یىقعپ ضز مبدًا ىآ ُظاسًا فّبو بث ندح ِث حغؾ تجؿً فیاعفا زاَه يیا ظضبث یگػیٍ .تؾا ِتفطگ ٍ طییغت بث ىبهعوّ بّ ٍ یىیعیف تاطثا فیاعفا بی ییبیویق تؾا ُزبه . ِّز ضز تبخَؿٌه سیلَت طیذا یبّ ُاض یطویلپ فبیلاًَبً ظا ُزبفتؾا ِلوخ ظا یىقعپ  تبهسذ ِئاضا یبكگ نكچ  هطت یىقعپ ُظَح ضز یطیگ ُزَث یوی .تؾا زطثضبو ُظَح ِتقض سٌچ زطىیٍض هی سٌهظبیً تلغا یىقعپ تؿیظ یبّ یه یا ِو سقبث یه تیوطت یؾسٌْه ٍ زاَه نلػ بث اض یىقعپ ٍ یتؿیظ مَلػ .سٌو نْه ظا یىی يیطت بّزطثضبو ی ؽیطتبه ظا ُزبفتؾا تفبث یؾسٌْه یبّ .تؾا لَلؾ طیثىت ٍ سقض یاطث یتؿثضاز ىاٌَػ ِث یفیلًَبً غیبق ِث كیمحت يیا ضز  ـٍض يیطت  ٍ ِیْت یبّ يیطتوْه یبّزطثضبو تؿثضاز یبّ یؾسٌْه تفبث ضز یىقعپ یتذبؾظبث ِتذازطپ ُسق .تؾا

[1]  N. Kotov,et al.  Three-dimensional cell culture matrices: state of the art. , 2008, Tissue engineering. Part B, Reviews.

[2]  D. Wise,et al.  Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. , 1997, Journal of biomedical materials research.

[3]  F. Chaubet,et al.  Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. , 2010, Acta biomaterialia.

[4]  R. Langer,et al.  Degradation, Structure and Properties of Fibrous Nonwoven Poly(Glycolic Acid) Scaffolds for Tissue Engineering , 1995 .

[5]  Anderson,et al.  Host response to tissue engineered devices. , 1998, Advanced drug delivery reviews.

[6]  J. Lemaître,et al.  Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system. , 1989, Biomaterials.

[7]  Robert Langer,et al.  Advances in Biomaterials, Drug Delivery, and Bionanotechnology , 2003 .

[8]  Dong Liu,et al.  The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways , 2015, Scientific Reports.

[9]  S. Ramakrishna,et al.  Biomedical applications of polymer-composite materials: a review , 2001 .

[10]  T. Garg Preparation of Chitosan Scaffolds for Tissue Engineering using Freeze drying Technology , 2012 .

[11]  Nazma N. Inamdar,et al.  Chitosan-modifications and applications: Opportunities galore , 2008 .

[12]  M. Morra,et al.  Bioactive calcium silicate ceramics and coatings. , 2008, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[13]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[14]  J. Pachence,et al.  Collagen-based devices for soft tissue repair. , 1996, Journal of biomedical materials research.

[15]  K. Ohgo,et al.  Preparation and characterization of regenerated Bombyx mori silk fibroin fiber with high strength , 2008 .

[16]  E. Sachlos,et al.  Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. , 2003, European cells & materials.

[17]  Tae Gwan Park,et al.  Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. , 2007, Advanced drug delivery reviews.

[18]  Jaebeom Lee,et al.  Nanoscale hydroxyapatite particles for bone tissue engineering. , 2011, Acta biomaterialia.

[19]  J. Vacanti,et al.  The history and current status of tissue engineering: The future of pediatric surgery. , 2002, Journal of pediatric surgery.

[20]  Andrés J. García,et al.  Update on therapeutic vascularization strategies. , 2009, Regenerative medicine.

[21]  Yugyung Lee,et al.  Biomedical applications of collagen. , 2001, International journal of pharmaceutics.

[22]  Y. Jiao,et al.  Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them , 2017, Gels.

[23]  Akio Okamoto,et al.  Electro-spinning and electro-blowing of hyaluronic acid. , 2004, Biomacromolecules.

[24]  Kevin E. Healy,et al.  A novel method to fabricate bioabsorbable scaffolds , 1995 .

[25]  D. Hutmacher,et al.  Scaffolds in tissue engineering bone and cartilage. , 2000, Biomaterials.

[26]  Yuhui Li,et al.  Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering , 2013, International journal of nanomedicine.

[27]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[28]  Lefayet Sultan Lipol,et al.  Electrospinning and Electrospun Nanofibers , 2016 .

[29]  G. Skjåk-Bræk,et al.  Alginate as immobilization matrix for cells. , 1990, Trends in biotechnology.

[30]  Tarun Garg,et al.  Scaffold: a novel carrier for cell and drug delivery. , 2012, Critical reviews in therapeutic drug carrier systems.

[31]  L. Koole,et al.  Polymeric Microspheres for Medical Applications , 2010, Materials.

[32]  A. Aflatoonian,et al.  Reproductive biology, stem cells biotechnology and regenerative medicine: a 1-day national symposium held at Shahid Sadoughi University of Medical Sciences , 2016, International Journal of Reproductive Biomedicine.

[33]  H. Tønnesen,et al.  Alginate in Drug Delivery Systems , 2002, Drug development and industrial pharmacy.

[34]  E Bell,et al.  Recipes for reconstituting skin. , 1991, Journal of biomechanical engineering.

[35]  Debin Zhu,et al.  Subwavelength and Nanometer Diameter Optical Polymer Fibers as Building Blocks for Miniaturized Photonics Integration , 2012 .

[36]  P. Ma,et al.  Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. , 2001, Journal of biomedical materials research.

[37]  Heungsoo Shin,et al.  Electrospun gelatin/poly(L-lactide-co-ε-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds , 2008, Journal of biomaterials science. Polymer edition.

[38]  Xungai Wang,et al.  Recent Innovations in Silk Biomaterials , 2009 .

[39]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[40]  A. Nixon,et al.  Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. , 1995, Osteoarthritis and cartilage.

[41]  Bruce K Milthorpe,et al.  Engineering thick tissues--the vascularisation problem. , 2007, European cells & materials.

[42]  I. Vroman,et al.  Biodegradable Polymers , 2009, Materials.

[43]  Giovanni Vozzi,et al.  Blends of Poly-(ε-caprolactone) and Polysaccharides in Tissue Engineering Applications , 2005 .

[44]  R. Giardino,et al.  Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. , 2001, Biomaterials.

[45]  A R Boccaccini,et al.  Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. , 2002, Biomaterials.

[46]  A. Atala,et al.  In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. , 2002, The Journal of urology.

[47]  Y. Ikada,et al.  Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix , 2008, Journal of biomaterials science. Polymer edition.

[48]  Yunfeng Shi,et al.  Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique , 2011 .

[49]  A. Atala,et al.  In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. , 2001, Journal of biomedical materials research.

[50]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[51]  S. Lee,et al.  Biomaterials: Tissue Engineering and Scaffolds , 2006 .

[52]  T. Webster,et al.  Nanotechnology and nanomaterials: Promises for improved tissue regeneration , 2009 .

[53]  Robert Langer,et al.  Preparation and characterization of poly(l-lactic acid) foams , 1994 .

[54]  F. Lim,et al.  Microencapsulated islets as bioartificial endocrine pancreas. , 1980, Science.

[55]  R Langer,et al.  Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. , 1996, Biomaterials.

[56]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[57]  K. P. Rao,et al.  Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. , 1994, Journal of microencapsulation.

[58]  F. Silver,et al.  Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. , 1992, Journal of long-term effects of medical implants.

[59]  R. W. Siegel,et al.  Mechanical properties of nanophase metals , 1994 .

[60]  Seeram Ramakrishna,et al.  Potential of nanofiber matrix as tissue-engineering scaffolds. , 2005, Tissue engineering.

[61]  K. Burg,et al.  Biomaterial developments for bone tissue engineering. , 2000, Biomaterials.

[62]  F. Ferreira,et al.  Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. , 2015, Materials science & engineering. C, Materials for biological applications.

[63]  O. Kwon,et al.  Electrospinning of chitosan dissolved in concentrated acetic acid solution. , 2005, Biomaterials.

[64]  E. Fortunati,et al.  Biodegradable polymer matrix nanocomposites for tissue engineering: A review , 2010 .

[65]  S. Gogolewski,et al.  Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres , 1982 .

[66]  Robert Langer,et al.  Nanotechnology in drug delivery and tissue engineering: from discovery to applications. , 2010, Nano letters.

[67]  G. Ciardelli,et al.  Bioartificial polymeric materials based on polysaccharides , 2001, Journal of biomaterials science. Polymer edition.

[68]  A. M. Reed,et al.  Biodegradable polymers for use in surgery — poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation , 1981 .

[69]  D J Mooney,et al.  Engineering smooth muscle tissue with a predefined structure. , 1998, Journal of biomedical materials research.