Fixed points of a destabilized Kuramoto-Sivashinsky equation

We consider the family of destabilized Kuramoto-Sivashinsky equations in one spatial dimension u t + ? u x x x x + β u x x + γ u u x = α u for α, ? ? 0 and β , γ ? R . For certain parameter values, shock-like stationary solutions have been numerically observed. In this work we verify the existence of several such solutions using the framework of self-consistent bounds and validated numerics.

[1]  Ferenc A. Bartha,et al.  Local stability implies global stability for the 2-dimensional Ricker map , 2012, 1209.2406.

[2]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[3]  Piotr Zgliczynski,et al.  Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof , 2002, SIAM J. Appl. Dyn. Syst..

[4]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[5]  Tomasz Kapela,et al.  A Lohner-type algorithm for control systems and ordinary differential inclusions , 2007, 0712.0910.

[6]  Jacek Cyranka,et al.  Efficient and Generic Algorithm for Rigorous Integration Forward in Time of dPDEs: Part I , 2014, J. Sci. Comput..

[7]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[8]  Jonathan Goodman,et al.  Stability of the kuramoto-sivashinsky and related systems† , 1994 .

[9]  Warwick Tucker,et al.  Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[10]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[11]  Zbigniew Galias,et al.  Rigorous investigation of the Ikeda map by means of interval arithmetic , 2002 .

[12]  J. Hyman,et al.  THE KURAMOTO-SIV ASIDNSKY EQUATION: A BRIDGE BETWEEN POE'S AND DYNAMICAL SYSTEMS , 1986 .

[13]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[14]  Jens D. M. Rademacher,et al.  Viscous Shocks in the Destabilized Kuramoto-Sivashinsky Equation , 2006 .

[15]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[16]  Jacek Cyranka Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof , 2013 .

[17]  John Guckenheimer,et al.  Kuramoto-Sivashinsky dynamics on the center-unstable manifold , 1989 .

[18]  Philip Holmes,et al.  Scale and space localization in the Kuramoto-Sivashinsky equation. , 1999, Chaos.

[19]  Demetrios T. Papageorgiou,et al.  The route to chaos for the Kuramoto-Sivashinsky equation , 1990, Theoretical and Computational Fluid Dynamics.

[20]  R. Wittenberg Dissipativity, analyticity and viscous shocks in the (de)stabilized Kuramoto-Sivashinsky equation , 2002 .

[21]  F. Bartha,et al.  Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model , 2014 .

[22]  P. Zgliczynski,et al.  Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs , 2010 .

[23]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[24]  Stefano Luzzatto,et al.  Finite Resolution Dynamics , 2009, Found. Comput. Math..