Multiple network alignment on quantum computers

Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given $$k$$k graphs as input, alignment algorithms use topological information to assign a similarity score to each $$k$$k-tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

[1]  Gary L. Miller,et al.  Proceedings of the twenty-eighth annual ACM symposium on Theory of computing , 1996, STOC 1996.

[2]  J. A. V. BUTLER,et al.  Advances in Protein Chemistry , 1946, Nature.

[3]  B. Sanders,et al.  Quantum-circuit design for efficient simulations of many-body quantum dynamics , 2011, 1108.4318.

[4]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[5]  Ananth Grama,et al.  A universal quantum circuit scheme for finding complex eigenvalues , 2013, Quantum Information Processing.

[6]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[7]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[8]  Shlomo Moran,et al.  The stochastic approach for link-structure analysis (SALSA) and the TKC effect , 2000, Comput. Networks.

[9]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[10]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[11]  R. Jaenicke,et al.  Advances in protein chemistry, vol. 29 , 1976 .

[12]  Ananth Grama,et al.  Functional Coherence of Molecular Networks in Bioinformatics , 2012, Springer New York.

[13]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[14]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[15]  Gisbert Schneider,et al.  Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity , 2007, J. Chem. Inf. Model..

[16]  Colin P. Williams Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.

[17]  Haobin Wang,et al.  Calculating the thermal rate constant with exponential speedup on a quantum computer , 1998, quant-ph/9807009.

[18]  Michel X. Goemans,et al.  Proceedings of the thirty-fifth annual ACM symposium on Theory of computing , 2003, STOC 2003.

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[21]  Claude Brezinski,et al.  The PageRank Vector: Properties, Computation, Approximation, and Acceleration , 2006, SIAM J. Matrix Anal. Appl..

[22]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[23]  R. Glen,et al.  Molecular similarity: a key technique in molecular informatics. , 2004, Organic & biomolecular chemistry.

[24]  Sabre Kais,et al.  Decomposition of Unitary Matrices for Finding Quantum Circuits , 2010, The Journal of chemical physics.

[25]  E. Andrade Contemporary Physics , 1945, Nature.

[26]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[27]  Bonnie Berger,et al.  Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology , 2007, RECOMB.

[28]  P. Corkum,et al.  Excitation energies, radiative and autoionization rates, dielectronic satellite lines and dielectronic recombination rates for excited states of Ag-like W from Pd-like W , 2009 .

[29]  Bonnie Berger,et al.  Global Alignment of Multiple Protein Interaction Networks , 2008, Pacific Symposium on Biocomputing.

[30]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[31]  Paul Van Dooren,et al.  A MEASURE OF SIMILARITY BETWEEN GRAPH VERTICES . WITH APPLICATIONS TO SYNONYM EXTRACTION AND WEB SEARCHING , 2002 .

[32]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[33]  K. Birgitta Whaley,et al.  Finite temperature quantum simulation of stabilizer Hamiltonians , 2012, 1204.2284.

[34]  William J. Munro,et al.  Using Quantum Computers for Quantum Simulation , 2010, Entropy.

[35]  Chi Zhang,et al.  On the efficiency of quantum algorithms for Hamiltonian simulation , 2010, Quantum Information Processing.

[36]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[37]  Barry C. Sanders,et al.  Algorithm for Quantum Simulation , 2009 .

[38]  Bonnie Berger,et al.  IsoRankN: spectral methods for global alignment of multiple protein networks , 2009, Bioinform..

[39]  E. Knill,et al.  Theory of quantum computation , 2000, quant-ph/0010057.

[40]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[41]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[42]  ScienceDirect,et al.  FEMS microbiology letters , 1977 .

[43]  Howard Barnum,et al.  Quantum information processing , operational quantum logic , convexity , and the foundations of physics Los Alamos Technical Report LAUR 03-1199 , 2022 .

[44]  James Parker,et al.  on Knowledge and Data Engineering, , 1990 .

[45]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[46]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[47]  Wojciech Szpankowski,et al.  Pairwise Alignment of Protein Interaction Networks , 2006, J. Comput. Biol..

[48]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .

[49]  Giorgios Kollias,et al.  Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment , 2012, IEEE Transactions on Knowledge and Data Engineering.

[50]  Thomas L. Madden,et al.  BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. , 1999, FEMS microbiology letters.

[51]  Gene H. Golub,et al.  Matrix computations , 1983 .

[52]  Barry C. Sanders,et al.  Communications in Mathematical Physics Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2007 .

[53]  Shahin Mohammadi,et al.  Biological Network Alignment , 2012 .

[54]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[55]  K. Pearson Biometrika , 1902, The American Naturalist.

[56]  Serge Fehr,et al.  Theory of Quantum Computation, Communication, and Cryptography , 2012, Lecture Notes in Computer Science.

[57]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[58]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[59]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[60]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[61]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[62]  Ayman Farahat,et al.  Authority Rankings from HITS, PageRank, and SALSA: Existence, Uniqueness, and Effect of Initialization , 2005, SIAM J. Sci. Comput..

[63]  William L. Jorgensen,et al.  Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..

[64]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[65]  Xinhua Peng,et al.  Quantum chemistry simulation on quantum computers: theories and experiments. , 2012, Physical chemistry chemical physics : PCCP.

[66]  Giuseppe Di Battista,et al.  26 Computer Networks , 2004 .

[67]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[68]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.